افاق للعلوم
Volume 5, Numéro 4, Pages 348-362
2020-09-08

On The Geometric Structures Of Compact Manifold (distance Function, Critical Points On The Homology Representation)

Authors : Abd Assalam Ateia Ismaeel Khalid .

Abstract

Abstract: In the field of algebraic topology, the homology of an n – dimensional space reflects the geometric properties in the interior of such space. We found that and with appropriate parameter ε_n, we can built a union of optimizes neighborhoods to represents geometric structure in an n – dimensional manifolds. Upon the notion of the critical points of the distance function, we can generate an abelian group, which represents a basis for such homology. الملخص: في مجال التبولوجيا الجبريّة, هومولجي الفضاءات في البعد n تعكس الخواص الهندسيّة للداخل في هذه الفضاءات. وجدنا أنه لأجل القيمة المناسبة للقيمة الوسيطيّة ε_n, يمكن بناء اتحاد لأفضل جوار لتمثيل البناء الهندسي لمتعددات الطيات في البعد n. باستخدام النقاط الحرجة لدالة المسافة, يمكننا توليد زمر بوليّة بحيث تمثل أساسات للهومولوجي.

Keywords

Key words: Simplicial complex, excursion sets, distance function, critical points