Journal of New Technology and Materials
Volume 8, Numéro 1, Pages 102-109
2018-07-02
Authors : Boumesjed Aicha .
Intermediate band solar cells are one type of third generation photovoltaic devices. Indeed, the increase in the power conversion efficiency is achieved through the absorption of low energy photons while preserving a large band gap that determines the open circuit voltage [1]. The ability to absorb photons from different parts of the solar spectrum originates from the presence of an intermediate energy band located within the band gap of the material. This intermediate band, acting as a stepping stone allows the absorption of low energy photons to transfer electrons from the valence band to the conduction band by a sequential two photons absorption process. In This work, a numerical simulation is performed using Analysis of Microelectronic and Photonic Structure (AMPS) simulator to explore the possibility of higher efficiency of intermediate band sola cell (IBSC) based on GaAs1-xNx material (x=0.04). The doping density and layer thickness are investigated for optimized the performance of solar cell under solar illumination of AM1.5G. An 24.94% efficiency is determined for this new structure IBSC (GaAs0.96N0.04).
GaAsN; Solar cell; IBSC; Conversion efficiency;
Zieba Falama R.
.
Mibaile J.
.
Djongyang N.
.
Doka S. Y.
.
pages 375-393.
Rached Djaaffar
.
pages 161-170.
Zieba Falama R.
.
Dadjé A.
.
Djongyang N.
.
Doka S.y.
.
pages 426-437.
Hocine D.
.
Belkaïd M.s.
.
Lagha K.
.
pages 379-384.