Journal of New Technology and Materials
Volume 4, Numéro 1, Pages 23-26
2014-06-30
Authors : Rihan Yasser .
Micro- and nano-electromechanical systems (MEMS or NEMS)-based fuel delivery in direct methanol fuel cell (DMFC) devices offer opportunities to address unmet fuel cells related to fuel delivery. By applying an alternating electrical field across the actuator, the resultant reciprocating movement of the pump diaphragm can be converted into pumping effect. Nozzle/diffuser elements are used to direct the flow. To make the power system applicable for portable electronic devices, the micropump needs to meet some specific requirements: low power consumption but sufficient fuel flow rate. In this study, a theoretical method have been used to investigate the effects of materials properties, actuator dimensions, driving voltage, driving frequency, nozzle/diffuser dimension, and other factors on the performance of the whole system. As a result, a viable design of micropump system for fuel delivery in DMFC devices has been achieved and some further improvements are suggested. A mathematical model was used to simulate the behaviour of the micropump. The results of mechanical calculations and simulations show good agreement with the actual behaviour of the pumps.
Simulation; micropump; piezoelectric; fuel cell.
Bouhedma Sofiane
.
Ouali Mohammed
.
Mahieddine Ali
.
pages 051-062.
Boudghene Stambouli A.
.
Djerroud S.
.
pages 267-284.
Mostefaoui M.
.
Belmadani B.
.
Babouri A.
.
Djerdir A.
.
pages 207-218.
Belkhiri Z.
.
Zeroual M.
.
Ben Moussa H.
.
Zitouni B.
.
pages 121-130.
Kraa O.
.
Ghodbane H.
.
Saadi R.
.
Ayad M.y.
.
Becherif M.
.
Bahri M.
.
Aboubou A.
.
pages 327-345.