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Abstract 

 Research on the modeling of continuum robots is focused on ways to construct the geometric models, while 

maintaining maximum specificities and mechanical properties of the robot. This paper presents a new approach of 
geometric modeling of continuum planar multi- sections robots, assuming that each section is curved in a circular 

arc, while having inextensible central axis of the structure. The direct geometric model is calculated analytically, 

whereas the extreme points (used in calculating the inverse geometric model) of each section are calculated 

numerically using a particle swarm optimization (PSO) method. One advantage of this method is to simplify the 
mathematical calculations and transform the complex problem into a simple numerical function; which allows the 

knowledge of the form of the central axis of the robot. Simulation examples using this method are carried to 

validate the proposed approach. 

Keywords: flexiblecontinuum robot; central axis; PSO; Khalil Klifinger method. 

 

1. Introduction 

Modeling continuum robots requires a 

continuous model of the central axis of the robot 

[1].Traditional approaches to modeling, in which the 

frames are associated with each joint, are 

inappropriate for the case of continuum 

manipulators, precisely because of the absence of 

discrete links in their architecture. A natural 

approach is to use a theoretical curve to model the 

axis of hyper-redundant robot. The fundamental 

question, concerning the modeling of the continuum 

robots, resides also in the infinity of the number of 

degrees of freedom which require the geometrical 

models in their continuous form. 
However, the hyper-redundant robotic systems 

(figure 1), with discrete links or continuum cannot be 

controlled only considering a finite number of 

degrees of freedom. Thus admitting a  reduced set 

of physical solutions. Among contributions on the 

geometric models of these structures, we can cite the 

model of [2, 3] use the Frenet-Serret formulas and 

modelise the central axis of the robot by a kinematic 

chain consisting of several rigid bodies. 

 

 
   

 

 

Figure 1: Simulation of the elephant's trunk; (a): the 

elephant's trunk. (b): the central axis o f the robot 
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[4, 5] assume that each section of a manipulator 

bends in an arc of a circle and that the central axis of 

the structure is inextensible. [5]Is based on modified 

Denavit-Hartemberg convention, the validation of 

this model has been done on a prototype robot 

called the „elephant trunk‟. Similarly [6] uses this 

assumption to study the kinematics of a snake robot. 

Furthermore, the inverse geometric model for the 

case of a multi-section is studied by [8], where the 

end points of each section are assumed to be known. 

The authors did not validate experimentally the 

model but they simulated the overall behavior using 

appropriate software. [9] Deals with the validation of 

the geometric model of a multi-section manipulator 

support by a mobile robot. [10] Has done

enhancements on the inverse geometric model 

described by [4] for one bending section, the 

validation of this model has done on a micro-robot 

and showed that the model was not robust against 

uncertainties of environment and inaccuracies of 

materials. This inverse geometric model is 

formulated as an optimization problem with a cost 

function and constraints using the principle of 

interval analysis.  Finally, a state of the art report in 

modeling these classes of robots is presented by [11]. 

The main contribution of this paper is described in 

two parts. The first presents the methodology follows 

to know the shape of the central axis of the robot, 

which represents the direct geometric model. This 

method relies on the assumption of a constant 

curvature and is based on knowledge of the angles 

between the end points of each section constituting 

the robot; these points will be determined by simple 

geometrical relations. The second part describes the 

inverse geometric model; where the extremes points 

of each section are calculated numerically by using 

optimization method, under the constraints of 

conservation of the length of each section. These 

geometric models presented are used to develop the 

kinematic and dynamic models for multi-section 

continuum robot. 

2. Direct Geometric Model 

2.1. Problem statement 

The direct geometric model consists of 

calculating the position and orientation of the 

platform n, with respect the base reference, 

depending on the lengths of cables (or tubes). In 

what follows, let us assume that each segment is 

curved in an arc of a circle, and that the central axis 

of the structure is inextensible. The first tangent of 

the curve is collinear with the initial ordered axis of 

each section (physical stress). 

 

 

 

Figure 2: Geometrical parameters (a) Overview of 

the bending section; (b) A portion of the bending 

section. 

 

Starting from the definition of arc length, where 

the curve is described with the arc length parameter: 

𝑓 𝑠 = (𝑥 𝑠 ,𝑦 𝑠 ), then its derivative is a unit 

vector, so it can be set as a function of an angle α(s) 

[12]: 

𝑓  𝑠 =  
𝑥  𝑠 = cos(∝  𝑠 )
𝑦  𝑠 = sin(∝  𝑠 )

   (1) 

From the figure 2(b) we have: 

 
 
 

 
 x = 𝑙 cos(𝜃) = 𝑙1 cos(𝜃) +

𝑑

2
sin( 2𝜃) 

=  𝑙2 cos(𝜃) −
𝑑

2
sin( 2𝜃)                   

y = 𝑙 sin(𝜃) =  
𝑑

2
+ 𝑙1 sin(𝜃) –

𝑑

2
cos( 2𝜃) 

= −
𝑑

2
+  𝑙2 sin(𝜃) +

𝑑

2
cos( 2𝜃)           

    (2) 

From equation (2) we find: 

sin(𝜃) =
𝑙2−𝑙1

2𝑑
    (3) 

(a) 

Arc of the circle 

Workspace 

(b)
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cos(𝜃) =  1 −  
𝑙2−𝑙1

2𝑑
 

2

   (4) 

 

Therefore:  

𝜃 = 𝑎𝑡𝑎𝑛2(  
𝑙2−𝑙1

2𝑑
 , 1−  

𝑙2−𝑙1

2𝑑
 

2

  ) (5) 

2.2.   Calculating the angles function   

Consider an inextensible section of length 𝑙, 

formed of (n +1) points (figure3). When using the 

arc length, the variation of angles 𝛼 𝑠𝑖  is given by: 

𝛼 𝑠𝑖 = 𝐴𝑠𝑖 + 𝐵 ; i = 0, 1… n   (6) 

With the boundary conditions: 

 
𝛼 𝑠0 = 0 = 0

𝛼 𝑠𝑛 = 𝑙 = 2θ
    (7) 

 

 

 

 

Figure 3: Variation of  ∝ (𝑠) 

After the development we find the 

expression of  𝛼 𝑠𝑖 : 

𝛼 𝑠𝑖 =
2θ

𝑙
𝑠𝑖  ;    𝑠𝑖 ∈  0, 𝑙    (8) 

The equation (8) becomes: 

𝛼 𝑠𝑖 =
2

𝑙
𝑎𝑡𝑎𝑛2 

𝑙2−𝑙1

2𝑑
 , 1−  

𝑙2−𝑙1

2𝑑
 

2

 𝑠𝑖         (9) 

2.3. Interpolation of the angles function   

The interpolation of the function (9), with a 

natural cubic spline, gives: 

∝  𝑠 = 𝑎𝑖  
𝑠−𝑠𝑖

𝑖
 

3

+𝑏𝑖  
𝑠−𝑠𝑖

𝑖
 

2

+𝑐𝑖  
𝑠−𝑠𝑖

𝑖
 

1

+ 𝑑𝑖 (10) 

Where:  𝑎𝑖 ,𝑏𝑖 , 𝑐𝑖  et  𝑑𝑖  are parameters of the cubic 

spline, with  𝑠𝑖 ≤ 𝑠 ≤ 𝑠𝑖+1, 𝑖 = 𝑠𝑖+1 − 𝑠𝑖   and  𝑖 =

0,… , 𝑛 − 1. 

 

The constraints of the natural cubic spline are: 

 

-  Interpolation at the points: 

∝  𝑠𝑖
+ =∝𝑖  , 𝑖 = 0,… ,𝑛 − 1 

∝  𝑠𝑖
− =∝𝑖 ,       𝑖 = 1,… , 𝑛         

- Continuity 𝐶1  : 

∝′  𝑠𝑖
+ =  ∝′  𝑠𝑖

− ,   𝑖 = 1,… , 𝑛 − 1 

- Continuity 𝐶2  : 

∝′′  𝑠𝑖
+ =  ∝′′  𝑠𝑖

− ,    𝑖 = 1,… , 𝑛 − 1 

-  Minimization of energy: 

∝′′  0 = 0   𝑒𝑡 ∝′′  𝑙 = 0 

2.4. Integration of the angles function   

Once the function of the angles  ∝  s  

determined, we can find the solution by integration 

of the equation (1), by using Simpson‟s numerical 

method. The function solution represents the shape 

of the central axis of the robot: 

𝑓 𝑠 =  
𝑥 𝑠 =  𝑐𝑜𝑠

𝑠

0
 ∝  𝑠  

𝑦 𝑠 =  𝑠𝑖𝑛
𝑠

0
 ∝  𝑠  

  (11) 

2.5.  Applications 

a. One section 

Consider a bending section of length  𝑙 =

200 𝑚𝑚. Increasing 𝑙1 and 𝑙2 with ∆𝑙 = 0: 10: 30, 

such as:   𝑙1 = 𝑙 − ∆𝑙  and  𝑙2 = 𝑙 + ∆𝑙. The robot 

configuration is shown in figure 4 and the curves of 

the associated angles functions of each movement 

are shown in figure 5. The position and orientation 

of the superior platform with respect to base 

reference is given by equations (11) and (5) for 𝑠 =

𝑙. 

 
 

Figure 4: Planar robot with a single section 
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Figure 5: Functions of the associated angles  

b. Three sections 

Consider a robot formed with three sections of 

length   𝑙1 = 200  𝑚𝑚, 𝑙2 = 150  𝑚𝑚   and  𝑙3 =

100 𝑚𝑚. The position and orientation of the 

platform j with respect to base reference for a 

variation of the cables 𝑙𝑖 ,𝑗 (𝑙1,1 = 170, 𝑙2,1 =

230, 𝑙1,2 = 170, 𝑙2,2 = 130, 𝑙1,3 = 130, 𝑙2,3 = 70 ); 

is given by equations (11) and (5)  

- Platform 1:  
𝑓 𝑙1 =  

𝑥1 = 165.40
𝑦1 = 95.49

 

ɵ1 = 𝜋 3 

   

- Platform 2:  
𝑓 𝑙1 + 𝑙2 =  

𝑥2 = 294.05
𝑦2 = 133.97

 

ɵ2 = −0.486

  

- Platform 3:  
𝑓 𝑙1 + 𝑙2 + 𝑙3 =  

𝑥3 = 382.77
𝑦3 = 158.08

 

ɵ3 = 𝜋 3 

  

 
Figure 6: Initial and final position of the robot with 

three bending sections 

 

 
Figure 7: The function of the associated angles  

3. Inverse geometric model 

3.1.   Inverse geometric model for one section 

One bending section of a continuum 

manipulator is modeled by an arc of circle with one 

end point o fixed at the origin of the reference 

frame; the other end point P is located anywhere in 

the workspace. This section of continuum 

manipulator is parameterized by   lengths, its 

curvature κ, and its orientation ɵ as shown in figure 

8. These parameters are given by: 

𝜃 =  𝑎𝑡𝑎𝑛2 ( 𝑦,𝑥 )   (12) 

𝜅 =   
2(1−cos  2𝜃 )

 𝑥2 + 𝑦2
   (13) 

𝑠 =
2𝜃

𝜅
     (14) 

 
Figure 8: Circle arc parameters  

3.2. Inverse geometric model for multi-sections 

The inverse geometric model presented in the 

previous section can be iteratively applied to several 

sections in serial connection to model a continuum 

manipulator of n sections. 

The operational coordinates of the origins of the 

intermediate platforms (𝑥𝑖 ,𝑦𝑖) of each sections, are 

calculated numerically by the PSO method, using 

constraints on the conservation length, such 

that  𝑙𝑖 =     𝑥𝑖  −  𝑥𝑖−1  2  +    𝑦𝑖  −  𝑦𝑖−1   2   𝜃𝑖 /
 sin(𝜃𝑖) , with 𝜃𝑖 = 𝑎𝑡𝑎𝑛2( 𝑦𝑖 − 𝑦𝑖−1 ,  𝑥𝑖 −
𝑥𝑖−1 ), for  𝑖 = 1,… , 𝑛. Where  𝑥𝑖 ,𝑦𝑖  are the 

Cartesian coordinates of the origin of reference 

frame 𝑅𝑖 in the frame𝑅𝑖−1. The algorithm for 

computing the inverse geometric model of the 

overall structure is presented in figure 9. 
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Figure 9: Algorithm for computing the inverse 

geometric model of a planar flexible continuum 

robot  

This optimization method is inspired by the 

social behavior of some biological organisms, 

especially the group's ability of some animal species 

to locate a desirable position in the given area. This 

method uses the simple rules of displacement in the 

space of the solutions, where the particles can 

progressively converge to a local minimum. For each 

iteration t, the velocity changes by applying equation 

(15) to each particle. 

𝑣𝑖(𝑡 + 1) =  𝜔𝑣𝑖(𝑡) +  𝑐1𝜑1 𝑃𝑖𝑏𝑒𝑠𝑡 − 𝑥𝑖 +

𝑐2𝜑2(𝑃𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖  )         (15) 

𝑥𝑖 𝑡+ 1 =  𝑥𝑖 𝑡 + 𝑣𝑖  (𝑡+ 1)       (16) 

 

Where 𝜔 is called the inertia weight, 𝑐1 and 𝑐2  are 

weighting factors and 𝜑1  ,  𝜑2 are random variables 

uniformly distributed within interval [0, 1]. 

 𝑃𝑖𝑏𝑒𝑠𝑡   and 𝑃𝑔𝑏𝑒𝑠𝑡   represent the best position visited 

by a particle and the best position visited by the 

swarm till the current iteration t. The position 

update is applied by equation (16) based on the new 

velocity and the current position. The calculation 

steps are given by the following algorithm: 

 

- For the time step t 

    For each particle 

        For each dimension d 

            Modify the velocity: 

 

𝑣𝑑(𝑡 + 1) =  𝜔𝑣𝑑(𝑡) +

𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑦. [𝑐1𝜑1] 𝑃𝑖,𝑑 − 𝑥𝑑(𝑡)  +

𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑦. [𝑐2𝜑2](𝑃𝑔 ,𝑑 − 𝑥𝑑(𝑡) )

  

- Move:𝑥 𝑡 + 1 =  𝑥 𝑡 + 𝑣(𝑡 + 1) 

 

3.3. Application 

Knowing the general movement of the platform 

n generated by the operational 

coordinates  𝑥𝑛 , 𝑦𝑛  we determine the displacements 

of the actuators and the mobile platforms. To 

illustrate this inverse geometric modeling, we applied 

it on a planar robot consisting of two bending 

sections of length  𝑙1 = 140 𝑚𝑚 and  𝑙2 =

120 𝑚𝑚 ,  for the following settings of the trajectory 

in operational space:  

  
𝑥2 = 260− 15 × 𝑡
𝑦2 = 15 × 𝑡            

  

Where t  is time variable varying from 0 to 8 sec, 

with a step equal 2 sec . 

 
Figure 10: The virtual axis of the robot 

 
Figure 11: Robot with two bending sections 

describing a linear path 

 
Figure 12: The execution time of the optimization 

algorithm for each point found. 
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The simulations were done on a PC with a 

processor i3 3.30 GHz. the execution time of the 

optimization process for each point found is shown 

in figure.12. The average time is equal to 0.128 sec. 

Conclusion and future works 

In this paper, a new approach of modeling of 

the planar flexible continuum robots is presented. 

We have detailed the methodology to formulate the 

function describing the curvature of the central axis 

of the robot. The principal idea of our work is based 

on rebuilding of curves work starting from the 

tangential data developed in [12]. Mathematical 

formulations of a planar continuum robot are given; 

these formulations provide the calculation of the 

cables lengths of the robot for of a given point in the 

workspace and vice versa.  The operational co-

ordinates of the intermediate platforms origins, used 

in the calculation of the inverse geometric model, 

are calculated by a numerical method where the 

space of search for this method is arbitrarily selected. 

Future work is to improve the execution time, one 

taking the space of research in the workspace of each 

section, in order to find a solution close to real time.  

To have the uniqueness of the solution the 

introduction of other constraints is necessary. Also 

the generalization of the approach in the three-

dimensional is projected. 
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Abstract 

Nickel oxide (NiO) nanoparticles were prepared by colloidal thermal assisted reflux condensation method 
using nickel acetate (precursor salt) and N, N - Dimethylformamide - DMF (solvent) with or without the 
addition of surfactants such as cetyl trimethyl ammonium bromide (CTAB), polyvinyl pyrrolidone (PVP),   
polyvinyl alcohol  (PVA) and sodium monododecyl sulphate (SDS) respectively. Finally, the prepared samples 
products were calcined at different temperatures systematically such as at  200

o

C, 400
o

C, 600
o

C, 800
o

C for 2 hrs 
each to get the phase pure product.  The calcined nanoparticles were characterized by X-Ray Diffraction (XRD), 

Energy Dispersive X-ray Analysis (EDAX), Fourier Transform Infrared (FTIR) Spectroscopy, Particle Size 
Analysis, Scanning Electron Microscopy (SEM), Diffuse Reflectance Spectroscopy (DRS) and Photo Luminescence 

(PL) Spectroscopy techniques.  All the samples were crystallized in cubic structure.  Effect of surfactants in the 
synthesis of nickel oxide (NiO) particles is discussed and reported. 
Keywords: Thermal assisted reflux condensation method; NiO nanoparticles; Effect of surfactants 

1. Introduction 

 

Metal oxide nanoparticles have been studied 

world-wide for potential applications now-a-days. NiO 

is a p-type semiconductor oxide material owing to its 

defect structure and it has a wide band gap energy 

range from 3.4 - 4 eV  [1, 2].  NiO has been studied 

various groups since it has an excellent durability and 

electrochemical stability as well due to its  good  

optical,  magnetic and electrical characteristics[3-5].  

Further, NiO is a potential candidate for various 

applications such as electronic devices [6-8], catalysts 

[9-11], smart windows [12], battery electrodes [13], 

dye-sensitized solar cell devices [14,15], electro 

chromic display devices and films [16,17], gas sensor 

materials [18], electrochemical super capacitors [19], 

antiferro-magnetic films [20], fuel cell electrodes 

[21,22], energy efficient automobile mirrors [23], 

building glazing materials [24] and hetero junction 

solar cells [25].  Several reports showed an amazing 

level of its performance as a candidate material for 

various other applications also [26-27].   NiO 

nanoparticles  were prepared by various routes such 

as, sputtering [28-31], electrochemical deposition [32-

34], thermal decomposition [35-37], electron beam 

evaporation[38], vacuum evaporation[39], 

solvothermal[40], polymer-matrix assisted 

synthesis[41], spray pyrolysis[42,43], surfactant-

mediated synthesis[44], sol-gel technique[45-50], 

chemical method[51], chemical precipitation [52,53], 

micro emulsion [54], reactive pulsed laser ablation 

technique [55], hydrothermal method [56-58] 

microwave method [59], etc.  In this research work, we 

report a simple way of synthesizing NiO nanoparticles 

by a colloidal thermal assisted reflux condensation 

method in presence of surfactants. The prepared 

materials were characterized systematically by XRD, 

EDAX, FTIR, Particle Size Analysis, SEM, DRS and 

PL techniques. The effect of surfactants in the 

synthesis of NiO naoparticles is discussed and 

reported. 
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2. Experimental procedure 

The analytical grade chemicals such as nickel 

acetate (Merck, India), N, N-Dimethylformamide 

(Merck, India), cetyl trimethyl ammonium bromide 

(Merck, India), polyvinyl pyrrolidone (Merck, India),   

polyvinyl alcohol (Merck, India) and sodium 

monododecyl sulphate (Merck, India), ethanol 

(Merck, India) were used.  Deionized water was used 

throughout the experiment.  The NiO nanoparticles 

were prepared by colloidal thermal assisted reflux 

condensation method as shown in Fig. 1. In the typical 

experiment, the nickel acetate solution (1M)  was 

prepared by dissolving it in 100 ml DMF. The above 

solution mixture was taken in a RB flask and stirred 

well at room temperature for about 10 minutes.  After 

stirring, a reflux condenser was connected with the RB 

flask and the solution was refluxed at 90
o

 C for 6 h in a 

magnetic stirring apparatus (1200 rpm). A colloidal 

precipitate was resulted.  It was cooled down and the 

precipitate was separated by centrifugation. The 

separated precipitate was washed thoroughly with 9:1 

water ethanol mixture and then dried at 85
o

 C for 2 h. 

The resultant material was heat treated at 

temperatures such as, 200
 

, 400, 600 and 800
o

C for 2 h 

each to get a phase pure product. The above 

experiment was repeated with the addition of 

surfactant (1 %) such as CTAB, PVP, PVA and SDS 

each at the initial stage itself to study the effect of 

surfactants in the preparation of NiO nanoparticles. 

The reaction and mechanism involved in the synthesis 

of NiO nanoparticles are indicated in Fig. 2. 

The powder XRD studies were carried out 

with a Shimadzu XRD6000 X-ray diffractometer using 

CuKα radiation (λ = 0.154059 nm) radiation with a 

nickel filter. The applied current and voltage were 30 

mA and 40 kV respectively. The 2θ scanning range 

was 10° to 90° with a scan rate of 10°min
-1

. The 

crystallite sizes of nickel oxide were estimated using 

the Debye-Scherrer equation. The chemical structure 

information of NiO nano powder were recorded by 

Fourier transform infrared spectra (SHIMADZU 

Spectrophotometer) using KBr pellet technique in the 

range from 4000cm
-1

 to  400cm
-1

 (spectral resolution 

was 4 cm
-1

 and number of scans was 20). The average 

particle size of the NiO nano powder was measured 

with a Zetasizer Ver. 6.32 manufactured by the 

Malvern Instruments Ltd. The surface morphology, 

size of particles and elemental compositions of NiO 

nano powder was characterized by scanning electron 

microscope (SEM JEOL JSM-6610) equipped with an 

energy dispersive X-ray (EDAX) spectrophotometer 

and operated at 20kV. Absorbance spectra of the NiO 

nano powder were recorded by UV-Visible Double 

Beam Spectrophotometer (Shimadzu 1800), equipped 

with a diffuse reflectance sphere using Teflon was 

employed as a reference material.  Powder samples 

were loaded into a quartz cell and spectra were 

recorded range between 200 nm to 600 nm by using 

diffused reflectance method. Photoluminescence 

spectrum of the NiO nano powder was measured by 

Spectroflurophotometer (FLUOROLOG, HORIBA 

YVON) with Xe laser as the excitation light source at 

room temperature. 

 

Figure 1. Flow chart to prepare NiO  nanoparticles by 

colloidal thermal assisted reflux condensation method 
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Figure 2. Reaction and mechanism involved in 

the synthesis of NiO nanoparticles by colloidal 

thermal assisted reflux condensation method 
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3. Results & Discussion 

3.1. X-Ray Diffraction Studies 

The powder XRD patterns obtained on NiO 

nanoparticles prepared by colloidal thermal assisted 

reflux condensation method are indicated in Fig. 3. 

The XRD peaks are found to be very sharp indicating 

the highly crystalline nature of the sample. The 

product is identified as NiO using JCPDS pattern No. 

01-1239. The diffraction peaks found in all the 

samples can be exactly indexed to a cubic structure of 

NiO.  The lattice parameters were calculated from 2θ 

values in the X-ray diffraction patterns.   No 

characteristic peaks of impurity were observed. The 

crystal size (Dx) was calculated using the Debye-

Scherrer formula [60]. 

                           Dx = 0.91  /  cos            (1) 

Where ‘’ is the X-ray wavelength (λ =0.154059 nm 

for CuKα), ‘’ is the FWHM (full width at half 

maximum intensity) and ‘’ is the Bragg’s angle.  

The theoretical density (Dp) was calculated using 

the formula [61]. 

Dp = (Z * M) / (N *a
3

) g.cm
-3                                                  

 (2)
 

Where ‘Z’ is the number of chemical species in the 

unit cell, ‘M’ is the molecular mass of the sample 

(g/mol), ‘N’ is the Avogadro’s number (6.022 x 10
23

) 

and ‘a’ is the lattice constant (cm). The crystallographic 

parameters obtained on the NiO nanoparticles are 

given in the Table 1.  

 

 

 

Sample Crystal structure Unit cell lattice 

parameter ‘a’ 

(Å) 

Unit cell 

volume 

(Å)
3

 

Theoretical 

density 

(g/cc) 

Crystallite 

size  

(nm) 

Standard XRD data 

for NiO powder 

(JCPDS No. 01-1239) 

Cubic 4.171 72.56 6.838 -- 

NiO (prepared 

without any 

surfactant) 

Cubic 4.1786 72.9613 6.7999 .30 

NiO (prepared with 

CTAB) 

Cubic 4.1714 72.5848 6.8352 5.17 

NiO (prepared with 

PVP) 

Cubic 4.1538 71.6699 6.9225 5.12 

NiO (prepared with 

PVA) 

Cubic 4.1600 71.9913 6.8916 4.87 

NiO (prepared with 

SDS) 

Cubic 4.1534 71.6492 6.9245 4.55 

 

3.2 Energy dispersive X- ray spectroscopy (EDAX) 

analysis  

The EDAX spectra of NiO nanoparticles 

synthesized by colloidal thermal assisted reflux 

condensation method are reported in Fig. 4. EDAX 

spectra of the samples show peaks for Ni and O only 

and not for any other impurities in the samples.  The 

chemical composition data obtained on NiO by 

EDAX analysis is given in Table 2. The data 

confirmed the presence of nickel and oxygen in all the 

samples. From the EDAX data, it was found that the 

weight percentage of nickel is varied between 53.0– 

57.46 % and for oxygen is 42.54 – 47.0%. The 

variation in the percentage of elements (Ni and O) 

may be due to the reaction conditions during the 

preparation of nickel oxide nanoparticles. EDAX 

shows that samples ‘a’ and ‘b’ are substoichiometric 

and samples ‘c’, ‘d’ and ‘e’ have an oxygen excess (or a 

deficit on Ni) which is the case for thermodynamically 

stable NiO (the departure from stoichiometry in Ni1-xO 

is due to nickel vacancies). All these compounds are 

far from equilibrium. The lattice parameters of 

samples ‘c’, ‘d’ and ‘e’ are less than samples ‘a’ and ‘b’ 

which also describes the above effect.  

 

3.3 FTIR spectroscopic studies 

Fig. 5 shows the FTIR spectra obtained on 

NiO nanoparticles prepared by colloidal thermal 

assisted reflux condensation method. FTIR studies 

were carried out to understand the presence of 

functional group of any organic molecule. Generally, 

any metal oxide may show absorption bands below 

1000 cm
-1

 due to inter atomic vibrations.  The wide 

band at 3620 and 1640 cm
-1 

present in all the samples 

is mainly  due to the stretching vibration mode O–H 

group, which are associated with the adsorbed water 

on the products [62].  The broad absorption band in 

the region of  600 – 700 cm
-1

 is assigned to Ni-O 

stretching vibration mode; the broadness of the 

absorption band indicates that the NiO powers are 

nanocrystals [63]. 

Table 1.The crystallographic parameters obtained on NiO nanoparticles prepared by colloidal thermal assisted 

reflux condensation method 
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Figure 3. Powder XRD patterns obtained on NiO nanoparticles prepared by colloidal thermal assisted reflux 

condensation method (a) without any surfactant (b) prepared with CTAB (c) prepared with PVP (d) prepared with 

PVA (e) prepared with SDS  

 

 

3.4 Particle size analysis 

The particle size distribution curves obtained 

with NiO nanoparticles prepared by colloidal thermal 

assisted reflux condensation method are shown in 

Fig.6.  The particle characteristics data obtained on 

NiO nanoparticles particles is indicated in Table 3.  

From the particle size distribution data (Table 3), it 

was found the sample prepared with SDS as a 

surfactant resulted in very low particle size (78.98 nm).  

The presence of bigger particles (> 500 nm) in the 

samples may be due to high temperature treatment. It 

was reported that the higher temperature caused 

agglomeration to occur more readily[24]. However, 

the results obtained through laser scattering analysis 

are less reliable than microstructural studies.  

 

3.5 SEM studies 

The SEM images of the NiO nanoparticles 

prepared by colloidal thermal assisted reflux 

condensation method are indicated in Fig.7. Presence 

of nanostructural homogeneity in all the samples was 

confirmed by the SEM photographs. The images 

indicate that the samples have monodisperse and 

polycrystalline particles. The particles were spherical 

in shape and it was observed that some of the particles 

were agglomerated with each other due to large 

surface energy and large surface tension of the 

ultrafine particles. Smaller size grains were present in 

10 20 30 40 50 60 70 80 90

( a )

 2 Theta (degrees)

R
e
la

ti
v
e
 I

n
te

n
s
it

y
 (

a
.u

.)

 

 

 

( b )

 

 

 

 

( c )

 

 

 

 

( d )

 

 

 

 

( e )

(2
2
0
)

(3
1
1
)

(2
2
2
)

(1
1
1
)

(2
0
0
)

 

 

 
 



Effect of surfactants in the synthesis of NiO nanoparticles  … ,  JNTM(2013) M. Mohamed Jaffer Sadiq  et al 

18 

 

the sample prepared with SDS as a surfactant which is 

in accordance with the particle characteristics data. 

The samples ‘c’ and ‘e’ whose SEM images show large 

differences in aggregates size and size distributions 

(Fig. 6) but similar compositions and lattice 

parameters. The above difference in the particle 

characteristics of samples ‘c’ and ‘e’  is due to the 

departure from stoichiometry in Ni1-xO and which may 

be due to nickel vacancies. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 4. EDAX spectra obtained on NiO nanoparticles 

prepared by colloidal thermal assisted reflux 

condensation method (a) without any surfactant (b) 

prepared with CTAB (c) prepared with PVP (d) prepared 

with PVA (e) prepared with SDS 

 

3.6. DRS studies 

The DRS spectra obtained in all the samples 

are indicated in Fig.8. The absorption wavelengths of  

343, 342, 339, 337 and 336 nm were obtained for 

NiO nanoparticles prepared by colloidal thermal 

assisted reflux condensation method without any 

surfactants and with surfactants, CTAB, PVP, PVA 

and SDS respectively.  Energy band gap values for all 

the samples were calculated by using Tauc relation 

[64]. 

 (h)
n

 = A (h - Eg)
                                                      

 (3) 
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Where ‘’ is the absorption coefficient, ‘h’ 
is the photo energy, ‘Eg’ is the optical band gap, ‘A’ is 

a constant relative to the material and ‘n’ is either 2 for 

direct transition, or ½ for an indirect transition. The 

optical band gap value for the direct transition was 

obtained from Fig. 9. The calculated band gap values 

for the NiO nanoparticles were 3.45, 3.52, 3.57, 3.64 

and 3.69 eV for the samples prepared without any 

surfactant and with surfactants, CTAB, PVP, PVA and 

SDS respectively. The reported band gap values for 

the NiO sample are in the range 3.4 - 4.0 eV[2].  

Hence, the band gap values calculated for the NiO 

particles are in agreement with the reported data. The 

obtained band gap values of NiO nanoparticles may 

cause a blue shift in their absorption spectra due to 

quantum confinement effects. 

 

 

Figure 5. FTIR spectra obtained on NiO nanoparticles prepared by colloidal thermal assisted reflux condensation 

method (a) without any surfactant (b) prepared with CTAB (c) prepared with PVP (d) prepared with PVA (e) prepared 

with SDS  

 

  

3.7. PL emission spectra studies 

The PL Emission spectra  obtained in all the 

samples are indicated in Fig.10. The excitation 

wavelength is 340 nm. A strong PL emission peak was 

found at 410 nm (3.03 eV) which is corresponding to 

near emission band edge in all the samples due to the 

recombination of excitons. The strong PL emission 

peak is attributed to the high purity and perfect 

crystallinity of the NiO nanoparticles. The above 

result also in accordance with the reported data.  

 

4. Conclusions 

NiO nanoparticles are prepared by Colloidal 

thermal assisted reflux condensation method using 

various surfactants  (CTAB, PVP, PVA and SDS) and 

the results are reported. The XRD data obtained on 

NiO nanoparticles shows that all samples crystallized 

as cubic. The EDAX data confirmed the presence of 
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nickel and oxygen in all the samples. From the FTIR 

data, it is shown that all samples exhibited 

characteristic peaks for NiO and the samples have 

moisture due to their less size. The particulate 

properties obtained on NiO powder suggest that the 

particles are present in the nanometer range. The 

SEM images exhibit that the samples prepared with 

the addition of SDS (surfactant) during the 

preparation of NiO resulted in smaller particle size 

than other samples. Optical studies were carried out 

by DRS spectra and PL emission spectra.  
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Figure 6. Particle size distribution curves 

obtained on NiO nanoparticles prepared 

by colloidal thermal assisted reflux 

condensation method (a) without any 

surfactant (b) prepared with CTAB (c) 

prepared with PVP (d) prepared with PVA 

(e) prepared with SDS 
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Figure 7. SEM image obtained on NiO nanoparticles prepared by colloidal thermal assisted reflux condensation 

method (a) without any surfactant (b) prepared with CTAB (c) prepared with PVP (d) prepared with PVA (e) & (f) 

prepared with SDS 
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Figure 8. DRS spectra obtained on  NiO nanoparticles prepared by  colloidal thermal assisted reflux condensation 

method (a) without any surfactant (b) prepared with CTAB (c) prepared with PVP  

(d) prepared with PVA (e) & (f) prepared with SDS 
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Figure 9. Band gap energy of NiO nanoparticles prepared by  colloidal thermal assisted reflux condensation method 

(a) without any surfactant (b) prepared with CTAB (c) prepared with PVP  

(d) prepared with PVA (e) & (f) prepared with SDS 
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Figure 10. PL Emission spectra of  NiO nanoparticles prepared by  colloidal thermal assisted reflux condensation 

method (a) without any surfactant (b) prepared with CTAB (c) prepared with PVP 

(d) prepared with PVA (e) & (f) prepared with SDS 
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Table 2.  Chemical composition data obtained on NiO (prepared by colloidal thermal assisted reflux condensation 

method) by EDAX analysis  

 

Process Atomic weight % of 

elements  

Without any surfactant Ni – 57.46 

O – 42.54 

CTAB Ni – 53.0 

O – 47.0 

PVP Ni – 45.91 

O – 54.09 

PVA Ni – 46.07 

O – 53.93 

SDS Ni – 45.91 

O – 54.09 

 

 

 
Table 3.  Particle characteristics data obtained on NiO  nanoparticles prepared by colloidal thermal assisted reflux 

condensation method 

 

 

Process Peak 1 Peak 2 Average 

particle 

size 

(nm) 

% 

Intensity 

Diameter 

(nm) 

% 

Intensity 

Diameter 

(nm) 

Without any 

surfactant 

91.1 319.5 8.9% 4830 329.4 

CTAB 100 367.1 -- -- 452.0 

PVP 100 305.8 -- -- 320.7 

PVA 100 288.9 -- -- 314.1 

SDS 96.7 81.88 3.3 4760 78.98 
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Abstract  

In this work, we used a nanosecond Nd: Yag laser (=532 nm) with a pulse duration of 15 ns, and an energy of 

50 mJ and, therefore, we studied the threshold ablation of industrial aluminum alloy. The composition of the 

recuperated aluminum (% mass) is (72.02 Al, Si 13.05, 6.34 Zn, 4.28 O, 2.08 Mg, 1.75 Cu, 0.48 Ni) and the 

industrial aluminum is (83.10 Al, 1.66 Si, 4.12 Fe 2.17 O, 1.20 Mg, 5.47 Cu, 1.74 Mn, 1.79 Pb). For nanosecond 

lasers, the primary energy is lost by thermal diffusion in the irradiated target, because there is enough time to 

convert optical energy into thermal energy and heat spread. Fusion and / or evaporation may take place if the 

surface temperature exceeds the critical point when the energy of radiation is above the ablation threshold. The 

results shows that the threshold ablation of the recuperated aluminum is lower than that of the aluminum industry, 

it is about 5 J.cm
-2

 for the recovered aluminum and 10 J.cm
-2

 for the industrial aluminum. The threshold ablation is 

shifted towards the low values when the number of pulses increases. 

Keywords: laser-matter interaction; Laser ablation; Aluminum Alloys  

 

Introduction  

Nanosecond laser pulses may produce both thermal 

melting (as femtosecond and picosecond pulses) or 

ultrafast nonthermal melting depending on the pulse 

fluence. This was demonstrated experimentally by 

Sokolowski-Tinten et al. [1], who found that the 

transformation of GaAs into its liquid state occurs 

within several tens of picoseconds at fluences close 

to the melt threshold due to thermal melting under 

highly superheated conditions [1] or within several 

hundred femtoseconds via carrier excitation[1, 2] for 

very high fluences. The processes occurring under 

high energetic fs pulse irradiation could be described 

more precisely with the help of the theoretical work 

of Stampfli and Bennemann [3]. The joining of very 

small metallic workpieces (10– 200 mm) causes 

problems that often cannot be solved by 

conventional methods. In this case, soft soldering by 

means of laser radiation is sufficient. During 

soldering, laser light is used to melt an additional 

material with a considerably lower melting 

temperature than that of the material of the 

component to be joined. In order to understand this 

phenomenon, metallic alloys (Al, Cu, Zn, ….) are 

irradiated by a Nd:Yag pulsed laser. The chemical 

distribution of elements can be influenced, in 

particular the oxygen [4] as well as the 

microhardness [5]. The irradiated area is studied by 

the profilometer instrument in order to measure the 

ablation depth. 

 

Experimental  

The samples studied are two materials, industrial 

and recuperated aluminum alloys. They were 

polished mechanically and cleaned. The chemical 

composition of each type is obtained by X-ray 

analysis[4]. The chemical composition of recycled 

aluminum alloy is Al(72.02 wt %), Si(13.05 wt %), 

Zn(6.34 wt %), O(4.28 wt %), Mg(2.08 wt %), 

Cu(1.75 wt %), and Ni(0.48 wt %). The chemical 

composition of industrial aluminum alloy is Al(83.10 

wt %), Cu(5.47 wt %), Fe(4.12 wt %), O(2.71 wt %), 

Mn(1.74 wt %), Si(1.66 wt %), and Mg(1.20 wt %). A 
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nanosecond pulsed laser (Nd:Yag) is used to 

irradiate an aluminum alloy sample (fig.1). The 

instrument used in this experiment is the Spectrum 

laser system. The pulse duration, wavelength, and 

pulse energy are 15 ns, 532 nm, and 50 mJ, 

respectively. All irradiation experiments are 

performed in air at room temperature. The analysis 

of irradiated area is realized by the profilometer 

instrument in order to measure the ablation depth. 

The properties of material studied are reported in 

the table 1. 

 

 Table1: Main properties of the two alloys studied 

(compared with pure Aluminum) 

 

 

 recuperated 

aluminum 

industrial 

aluminum 

pure 

Aluminum  

Density 2816 2614 2700 

Microhardness 

(kg F/mm
2

) 

118 125 2.75 

Thermal 

conductivity 

(W/m.K) 

128 160 237 

 

  

 

 

 

Results 

 The fluence threshold ablation (Fs), by definition, is 

the influence filed in the material from which a 

significant removal is achieved [1, 2]. The fluence 

threshold depends on the material and laser 

parameters[1]. The fluence threshold ablation may 

be shortened to one critical temperature to be 

reached for a regime ablation [3]. It is measured 

experimentally by extrapolating the quasi-linear 

evolution of the ablation depth (or the quantity of 

material ejected) depending on the fluence; for the 

low fluences until the zero, the ablation depth is nil. 

Figure 2 (a) and (b) show the ablation depth as a 

function of fluence for the two studied alloys, 

recuperated and industrial aluminum respectively. 

The threshold ablation is around 7 J.cm
-2

 for 

recuperated aluminum and 10 J.cm
-2

 for the 

industrial aluminum. That depends on the number 

of pulses. The ablation threshold tends toward low 

values when the number of pulses increases (see fig.2 

(a) and (b)) the tow cases, 80 and 40 pulses).  

 

 

 

Fig.2. Dependence of ablation depth on fluence for industrial (a) and recuperated aluminum(b) 
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The threshold ablation in the industrial aluminum 

is greater than that one of the recuperated 

aluminum; this is may be due to the low thermal 

conductivity of the recuperated aluminum in 

comparison with that of the industrial aluminum. So, 

when the metal has a high thermal conductivity, 

thermal energy will be transported quickly within the 

sample, so it does not accumulate in the irradiated 

zone, leading to a ablation depth. 

The quantity of ablated matter tends to saturation 

for high fluencies because the crater is very deep and 

because a quantity of laser energy is absorbed by 

plasma created near to the ablation zone. 

 

Conclusion 

The two studied alloys (industrial and 

recuperated aluminum) contain several chemical 

elements; each alloy is composed of more than six 

elements. So it is a complex material, and its 

interaction with a laser pulse of high intensity causes 

strange and very complex mechanisms. However, 

the behavior of these alloys in the ablation 

procedure is similar to that for simple alloys (binary 

or ternary). The threshold ablation is about 10 J.cm
-2

. 
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Abstract: 

The thin-film solar cells are becoming increasingly used in various applications; this is mainly due to the 
continued high cost of mono or polycrystalline silicon. In addition, the thin film technology offers the most diverse 

applications including uses low solar irradiance. The main fields of thin film solar cells are: the chain of amorphous 

silicon (a-Si), the chain of cadmium telluride (CdTe) and chalcopyrite sector (CIS and CIGS material). In this 
paper, a study on the influence of light and temperature on the characteristics I (V) of different thin film 

photovoltaic cells (a-Si:H single, a-Si:H tandem a-Si:H tripple, CdTe and CIS) is detailed. Under standard 

conditions (illumination of 1000W/m
2 

and cell temperature 25° C), we see that the CdTe is the closest that the 
monocrystalline silicon which has a maximum value of short circuit current material (3,26A). 

 

Keywords: Thin films, Efficiency, Electricity, irradiance, temperature. 

 
I. Introduction 

Thin films are the second generation of 

photovoltaic technology, they have many 

applications in various areas such as optics, 

electronics, sonsors in the photovoltaics technology. 

In this generation, there are three main channels: 

 

A. die amorphous silicon (a-Si) 

These cells are comprised of a glass 

substrate or plastic on which is deposited a thin layer 

of silicon [1], a process requiring very little energy. 

Although the performance of such cells is lower than 

crystalline cells (5-9%), which is due to the low 

mobility of charge carriers in these materials.  

 

B. The die telluride of cadmium (CdTe) 

It is a highly promising technology, allowing 

yields perfectly adequate (16.5%) in the laboratory. 

Share a bandgap of 1.5 eV perfectly adapted to the 

solar spectrum [2] and a very high absorption 

coefficient, only a layer of 2 μm is necessary to 

obtain a very opaque material and absorbing a large 

part of the solar spectrum.  

 

C. Chain chalcopyrite (CIS and CIGS material) 
Selenium copper and indium (CIS) is a 

ternary material having a chalcopyrite structure. It 

has a coefficient of absorption between 100 and 

1000 times greater than that of amorphous silicon. 

Cells based on chalcopyrite quaternary material such 

as CIGS (Cu for (Ga, In) (Se, S)2) also has very 

interesting performance. 

Production of such cells (thin film) is less 

expensive than the first generation (crystalline 

silicon) since it consumes less semiconductor 

material and does not require going through the step 

of converting the silicon "wafers". The problem of 

second-generation cells is lower efficiency of this cell 

type (6-7% and 14% in the lab for the amorphous 

silicon) and the toxicity of certain elements 

(cadmium) for their manufacture. However, this 

generation has many advantages for niche 

applications such as flexible modules, with low lights 

or high temperatures. 

Selenium and copper indium (CIS), which is at the 

stage of industrial production and offers a yield of 10 

to 12% for its commercial modules does not present 

problems of toxicity of cadmium [3,4]. 

 

II. Modeling of thin film photovoltaic cell 

The functioning of a photovoltaic cell is 

described by the "standard" model based on a single-

diode (Figure 1), established by Shockley for a single 

PV cell and generalized for PV module by 

considering it as a set of identical cells connected in 

series / parallel [5, 6]. 
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Figure 1: Equivalent circuit of a PV cell. 

 

The current delivered by the panel is given by the following relationship [5]: 

 

        ShSCCSSph RRIVTkNRIVqIII /.1.../..exp0  
     

 
With:  

V: Voltage across the panel [V]. 

Iph: Photo current [A], proportional to the irradiance, 

corrected by TC. 

ID: Current in diode means teme I0 [exp (...) -1]. 

I0: Diode reverse saturation current, temperature 

dependent [A]. 

RS: serial resistance [ ]. 

Rsh: shunt resistance (or parallel) [ ]. 

Q: Electron charge = 1.602.10
-19

 Coulomb. 

k: Boltzmann's constant = 1.381.10
-23

 J / K. 


: Quality factor of the diode, typically between 1 

and 2. 

NCS: Number of cells in series. 

TC: Effective temperature of cells [Kelvin]. 

The photocurrent Iph varies with irradiance and 

temperature, we will determine relative to data 

values at reference conditions [5]: 

  CrefCISCphrefrefph TTII  .)./( 
                                                                                 

(2)  

Where: 

   and ref
: Effective and reference irradiance 

[W/m
2

]. 

TCref and TC: Temperature cell, reference and 

effective [°K]. 

  ISC
 : Temperature Coefficient of photo current 

(or short circuit) [A/°K]. 

The reverse saturation current of the diode is 

assumed I0 vary with temperature according to the 

expression [5]: 

   CCrefGCrefCref TTkqTTII /1/1../.exp.)/( 3

00  

                                                             (3)  

Where G : energy gap of the cell material 

(crystalline Si: 1,12 eV; amorphous silicon 1,7 eV 

CIS: 1,03 eV CdTe = 1,5 eV). 

Reference conditions ref
and TCref external 

conditions that are specified for the data used for 

model establishment. These are either the 

manufacturer's specifications, data always at STC 

(“Standard Test Conditions” 1000W/m
2

, 25°C, 

AM1.5 spectrum) or values from in situ 

measurement module. 

The model thus involves the following six unknown 

parameters: Iphref, I0ref,


, RS, Rsh and 


ISC). The 

temperature coefficient of the photocurrent 


ISC is 

often given by the manufacturer and it is generally 

positive with a very low value (value/degree). 

The value of the shunt resistance Rsh, represents the 

inverse of the slope of the plateau I (V) to V low. It 

can be easily determined from the measured data. 

So we have four parameters (Iphref, I0ref,


, RS) from the 

measurement of the characteristic I/V for a given 

pair (Φref, TcRef) reference conditions. 

 

III. Simulation 

In the previous section, we presented the 

basis of mathematical modeling of thin film PV 

modules. This model was developed under the 

matlab environment, then we simulated the 

characteristics I(V) for a wide range of variation of 

the illumination received by the photovoltaic panel 

(between 200 and 1000W/m
2

) for a constant 

temperature (25°C) of the cell, and for a wide range 

of variation of cell temperature (from 25°C to 70°C) 

for a fixed light (1000W/m
2

). We applied the 

standard model to the different diode thin film 

photovoltaic modules (a-Si:H single, a-Si:H tripple, 

a-Si:H tandem, CdTe and CIS). 

 

IV. Results and Discussions 

 

The study of the influence of light on the 

characteristics I(V) for various photovoltaic modules 

(Figure 2) for a fixed cell temperature (25°C) shows 

that increasing the illumination (from 200 to 

1000W/m
2

) results in a displacement of the 

characteristic I=f(V) along the axis of the currents. 

The increase in the short circuit current is much 

greater than the open circuit voltage, since the short-

circuit current is a linear function of illumination, 

whereas the open circuit voltage is logarithmic [7]. 

(1) 
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Figure 2: Changes characteristics I (V) as a function of the illumination for different modules: 

(A) : Monocrystalline silicon module. 

                                                (B) :Module of a-Si:H single. 

                                                (C): Module of a-Si:H tandem. 

                                                (D): Module of a-Si:H tripple. 

                                                         (E): Module of CdTe. 

                                                         (F): Module of CIS. 
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Figure 3: Changes characteristics I (V) as a function of temperature cell for different modules: 

(G): Monocrystalline silicon module. 

                                                  (H): Module of a-Si:H single. 

                                                   (I): Module of a-Si:H tandem. 

                                                   (J): Module of a-Si:H tripple. 

                                                            (K): Module of CdTe. 

                                                            (L): Module of CIS. 
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The study of the influence of the cell 

temperature on the characteristics I(V) for various 

photovoltaic modules (Figure 3) for a fixed 

illumination (1000W/m
2

) shows that increasing the 

cell temperature and also module temperature (from 

10°C to 70°C), the Photo current Iph also increases, 

this is due mainly to the decrease in the width of the 

band gap of the material. The forward current of the 

junction, but also increases and much faster resulting 

in a decrease of the open circuit voltage. 

The results obtained (Figures 2, 3) show 

that in standard conditions (illumination of 

1000W/m
2

 and a cell temperature of 25°C) the short 

circuit current reaches its maximum value (2.96 A) 

for the CdTe (Fig. 2E) and (2.36 A) for (a-Si:H 

tripple) (Fig. 2D), by against, it reaches minimum 

values for the a-Si:H single (0.94 A) (Fig. 2B ) and 

CIS (0.61 A) (fig. 2F) and the a-Si:H tandem (1.28 

A)(Fig. 2C). By comparison, one sees that the CdTe 

is the closest material that the monocrystalline silicon 

which has a maximum value of short circuit current 

(3.26 A) (Fig. 2A). 

 

 

 

V. Conclusion 

 

In this work, we introduced the electric 

model with a diode modules for various thin film (a-

Si:H single, a-Si:H tandem a-Si:H tripple, CdTe and 

CIS) at different conditions sunshine and cell 

temperature. 

The study of the effect of illumination on 

the characteristics I (V) for different modules for a 

fixed cell temperature (25°C) shows that increasing 

the illumination leads to an increase in short-circuit 

current, while the increase in cell temperature for a 

fixed illumination 1000 W/m
2

 leads to an increase in 

short circuit current and a reduction in the open 

circuit voltage. 

Under standard conditions (illumination of 1000 

W/m
2

 and cell temperature 25°C), we see that the 

CdTe is the closest that the monocrystalline silicon 

which has a maximum value of short circuit current 

material (3.26 A). 
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