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Abstract. This study presents an enhanced discrete-time epidemic model for tuber-
culosis (TB) that incorporates the dynamics of multidrug-resistant TB (MDR-TB) and
extensively drug-resistant TB (XDR-TB) in the contexts of India and Russia. Despite
advancements in TB treatment, the challenge of drug-resistant strains necessitates in-
novative management strategies. Our analysis, grounded in TB case data from 2000 to
2022, demonstrates that increased chemo-prophylaxis significantly mitigates the pro-
gression to resistant TB states, while BCG vaccination effectively boosts immunity and
curtails transmission. The findings reveal that India faces a more pressing TB crisis
compared to Russia. By employing a discrete VSEIT model, we provide a comprehen-
sive exploration of TB dynamics and the socio-economic implications associated with
varying levels of preventative treatments. Sensitivity analyses highlight the importance
of optimized treatment regimens, emphasizing the need for public health interventions
tailored to local conditions. Overall, this research offers critical insights into the effec-
tive control of TB and the management of resistant strains, vital for informing future
epidemiological practices.

Keywords: discrete-time model, tuberculosis, global stability, extensively drug-resistant
TB, multidrug-resistant TB.
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1 Introduction

TB is a bacterial infection that mainly targets the lungs and is transmitted through airborne
particles expelled when an infected person coughs, sneezes, or spits. Despite being both
preventable and treatable, around one-quarter of the global population carries TB bacteria,
with 5–10% eventually developing active TB disease [27].

The complex dynamics of TB transmission and its persistence across various populations
call for a thorough understanding and effective control strategies. Mathematical modeling
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is a crucial tool for analyzing TB transmission and evaluating potential interventions. The
origins of mathematical epidemiology, particularly compartmental models, can be traced back
to Sir Ronald Ross, who developed the inaugural mathematical malaria transmission model
in 1911 [22].

In epidemiological modeling, differential equations and difference equations are widely
used to study infectious diseases. Although differential equations provide more advanced
theories and methods for dynamic analysis, recent years have seen a growing interest and
significant advancements in discrete epidemic models [1, 26].

The foundational model for understanding TB transmission dynamics was created by
Waaler and Anderson [25]. Despite all the great progress in preventing and treating TB, it’s
still a huge problem worldwide. The emergence of drug-resistant strains like MDR-TB and
XDR-TB is a major challenge. Multidrug-resistant tuberculosis (MDR-TB) is characterized by
resistance to the two most crucial first-line drugs, isoniazid and rifampicin. Extensively drug-
resistant tuberculosis (XDR-TB) shows resistance not only to these first-line drugs but also to
at least one fluoroquinolone and one injectable agent [28]. The development of drug resis-
tance (MDR/XDR) can arise from several causes: improper treatment regimens, including the
selection of drugs, treatment duration, and correct dosage; patient-related issues such as mal-
absorption and poor adherence; and program-related factors like unskilled health personnel
and irregular drug supply. Indeed, the emergence of MDR-TB is often cited as a sign of the
global community’s systematic failure to address a curable disease [18].

Gupta et al. [21] expanded the traditional SEIRS epidemiological model to include MDR-
TB. Their numerical analysis, both with and without delay, demonstrated that active TB and
MDR-TB can persist due to the absence of permanent immunity, as individuals who recover
may lose immunity and become susceptible again [9]. To address this, D. B. Kitaro et al. [14]
improved the model by incorporating chemoprophylaxis for latent infections and treatments
for active TB cases. And in this study, we developed a discrete mathematical model based on
an existing continuous mathematical model to illustrate that discrete models are significantly
more effective in studying diseases. Consequently, we utilized real data from the two countries
most affected by MDR-TB and XDR-TB to ensure the accuracy and relevance of our findings.

Given the importance of discrete-time models in epidemiological research, we developed a
discrete-time mathematical model using real TB case data from India and Russia from 2000 to
2022 [23] to explore their dynamics. The main objective is to investigate Euler discretization in
an integer context, focusing on parameter estimation and demonstrating the effects of chemo-
prophylaxis and vaccination on the infected, MDR, and XDR populations. This introduction
has briefly reviewed TB models. The remainder of this work is structured as follows: Section
2 details the discrete model formulation and parameter descriptions. Section 3 discusses the
mathematical results related to the disease-free equilibrium. Section 4 explores the dynamics
of the discrete model in relation to the endemic equilibrium. Section 5 covers parameter esti-
mation, analyzing the sensitivity, and numerical results. Section 6 offers a concise conclusion
summarizing the study.

2 Formulation of discrete TB model

In this section, we first present a continuous-time TB model, as detailed in [6], which includes
MDR-TB and XDR-TB populations. The aim is to create a model that is easy to analyze,
providing a thorough understanding of TB disease dynamics. Additionally, we explore the
impact of the chemoprophylaxis rate on infected and resistant TB classes to explain the socio-
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economic implications. This analysis helps to understand how varying levels of chemopro-
phylaxis can influence the spread and resistance patterns of TB, shedding light on the broader
socio-economic impact of TB control measures.

TB vaccination is mainly administered through the Bacillus Calmette-Guérin (BCG) vac-
cine, typically given to infants in countries with high TB incidence. The BCG vaccine provides
protection against severe forms of tuberculosis (TB) in children, but it is less effective at pre-
venting the more common pulmonary TB in adults.

Individuals usually contract Mycobacterium tuberculosis (MTB) after exposure to those with
active TB, entering an exposed phase. Some of these individuals then develop active TB and
become infectious. With timely treatment, individuals can recover and move to the treatment
category. Those who stop treatment may develop MDR-TB and move into the resistant class.
Individuals who recover from MDR-TB also enter the treatment category, but those who do
not respond to MDR-TB treatment develop XDR-TB. People who recover from XDR-TB also
move into the treatment category.

The population is classified into the following seven categories:

• V(t): Vaccinated at time t.

• S(t): Susceptible at time t.

• E(t): Exposed (not yet infectious) at time t.

• I(t): Infected at time t.

• D(t): Multidrug-resistant TB at time t.

• X(t): Extensively drug-resistant TB at time t.

• T(t): Undergoing treatment at time t.

The behavior of the model is governed by the following system of ordinary differential
equations (ODEs):

dV(t)
dt

= νΛ − (α + µ)V(t),

dS(t)
dt

= (1 − ν)Λ + αV(t)− βS(t)I(t)− µS(t),

dE(t)
dt

= βS(t)I(t)− (ϵ + µ + ω)E(t),

dI(t)
dt

= ϵE(t)− (τ + ζ + γ + µ + σ)I(t),

dD(t)
dt

= τ I(t)− (θ + µ + δ)D(t),

dX(t)
dt

= ζ I(t)− (ξ + µ + η)X(t),

dT(t)
dt

= γI(t) + ωE(t) + θD(t) + ξX(t)− µT(t).

(2.1)

with suitable initial conditions that are non-negative:
V(0) = V0 ≥ 0, S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0,
D(0) = D0 ≥ 0, X(0) = X0 ≥ 0, T(0) = T0 ≥ 0.
Parameter Definitions
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• Λ : The number of births,

• µ : The natural death rate,

• α : The moving rate from V to S,

• β : The transmission rate,

• γ : The rate of treatment from I,

• ϵ : The progression rate,

• ω : The chemoprophylaxis treatment rate,

• τ : The rate of the resistance to the first line of treatment,

• ζ : The rate of the resistance to the second line of treatment,

• ξ : The Rate of treatment for XDR-TB,

• θ : The rate of treatment for MDR-TB,

• δ : The mortality rate from disease in D,

• σ :The mortality rate from disease in I,

• η : The mortality rate from disease in X,

• ν : The vaccination rate.

Figure 2.1 shows the flow chart for the model. All parameters and variables in system (2.1)
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Figure 2.1: Flow chart of the discrete model (2.2)

are nonnegative, reflecting the discrete model’s representation of human dynamics. Using
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the Euler forward difference scheme [13, 17] with a step size of h = 1, the system (2.1) is
discretized into the following set of equations:

Vt+1 = Vt + νΛ − (α + µ)Vt,

St+1 = St + (1 − ν)Λ + αVt − βSt It − µSt,

Et+1 = Et + βSt It − (ϵ + µ + ω)Et,

It+1 = It + ϵEt − (τ + ζ + γ + µ + σ)It,

Dt+1 = Dt + τ It − (θ + µ + δ)Dt,

Xt+1 = Xt + ζ It − (ξ + µ + η)Xt,

Tt+1 = Tt + γIt + ωEt + θDt + ξXt − µTt.

(2.2)

with non-negative initial conditions :

V0 ≥ 0, S0 ≥ 0, E0 ≥ 0, I0 ≥ 0, D0 ≥ 0, X0 ≥ 0, T0 ≥ 0. (2.3)

3 The feasible region

Proposition 3.1. The feasible region for the discrete tuberculosis model described by system (2.2) is
given by:

Γ =

{
(Vt, St, Et, It, Dt, Xt, Tt) ∈ R7

+ | Nt ≤
Λ
µ

}
,

and this region is positively invariant.

Proof. Given that

Nt+1 = Vt+1 + St+1 + Et+1 + It+1 + Dt+1 + Xt+1 + Tt+1,

= Λ − µ[Vt + St + Et + It + Dt + Xt + Tt]

− σIt − δDt + ηXt + Vt + St + Et + It + Dt + Xt + Tt,

= Λ − µNt − σIt − δDt + ηXt + Nt,

Nt+1 − Nt = Λ − µNt − σIt − δDt + ηXt,

≤ Λ − µNt.

(3.1)

For Nt ≤
Λ
µ

, we have Nt+1 − Nt ≤ 0.

Thus, for 0 ≤ N0 ≤ Λ
µ , it follows that 0 ≤ Nt ≤ Λ

µ .
Therefore, the region

Γ =

{
(Vt, St, Et, It, Dt, Xt, Tt) ∈ R7

+ | Nt ≤
Λ
µ

}
,

is positively invariant. □

4 Disease-free equilibrium

This section focuses on identifying and analyzing a stable solution, known as the Disease-Free
Equilibrium (DFE) point within the model. .
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4.1 Existence of DFE

At the DFE, the disease is entirely eradicated from the population. Typically, this equilibrium
is achieved by setting the left-hand side of system (2.2) to (Vt, St, Et, It, Dt, Xt, Tt) and assigning
zero to the variables E, I, D, X, and T.

Vt = Vt + νΛ − (α + µ)Vt,

St = St + (1 − ν)Λ + αVt − βSt It − µSt,

Et = Et + βSt It − (ϵ + µ + ω)Et,

It = It + ϵEt − (τ + ζ + γ + µ + σ)It,

Dt = Dt + τ It − (θ + µ + δ)Dt,

Xt = Xt + ζ It − (ξ + µ + η)Xt,

Tt = Tt + γIt + ωEt + θDt + ξXt − µTt.

(4.1)

By solving the system (4.1), the DFE is determined as follows:

DFE = (V∗, S∗, E∗, I∗, D∗, X∗, T∗) =

(
νΛ

α + µ
,
(α + µ − µν)Λ

µ(α + µ)
, 0, 0, 0, 0, 0

)
,

with N = Λ
µ .

4.2 Basic reproduction number R0

The method outlined in [8, 24] is employed to compute the basic reproduction number R0

[3, 10] for the discrete TB model. This approach generates essential matrices crucial for deter-
mining the threshold parameter, R0, of model (2.2), given by:

R0 = ρ(FV−1).

where FV−1 is the next-generation matrix. Matrices F and V are m × m matrices, where m is
the number of infected compartments. The spectral radius of FV−1 is denoted by ρ(FV−1).

The model equations in (2.2) corresponding to infected classes are:

Et+1 = Et + βSt It − (ϵ + µ + ω)Et,

It+1 = It + ϵEt − (τ + ζ + γ + µ + σ)It,

Dt+1 = Dt + τ It − (θ + µ + δ)Dt,

Xt+1 = Xt + ζ It − (ξ + µ + η)Xt.

(4.2)

The next-generation matrices F and V are derived as follows:

F =


0 βS∗ 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , V =


(ϵ + µ + ω) 0 0 0

−ϵ (τ + ζ + γ + µ + σ) 0 0
0 −τ (θ + µ + δ) 0
0 −ζ 0 (ξ + µ + η)

 .

The matrix FV−1 is computed as:

FV−1 =


ϵβ(α+µ−µν)Λ

µ(α+µ)(ϵ+µ+ω)(τ+ζ+γ+µ+σ)
−β(α+µ−µν)Λ

µ(α+µ)(τ+ζ+γ+µ+σ)
0 0

0 0 0 0
0 0 0 0
0 0 0 0

 .
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The eigenvalues of FV−1 are obtained by solving
∣∣FV−1 − λI4

∣∣ = 0, yielding:

λ1 = 0, λ2 = 0, λ3 = 0, and

λ4 =
ϵβ(α + µ − µν)Λ

µ(α + µ)(ϵ + µ + ω)(τ + ζ + γ + µ + σ)
,

where λ4 is the dominant eigenvalue. Hence, the basic reproduction number is:

R0 = ρ(FV−1) =
ϵβ(α + µ − µν)Λ

µ(α + µ)(ϵ + µ + ω)(τ + ζ + γ + µ + σ)
.

4.3 Global stability investigation of the DFE

Proposition 4.1. Take the first equation of the model 2.2:

Vt+1 = Vt + νΛ − (α + µ)Vt,

If the initial condition V0 = 0 holds, then Vt is increasing for all t and Vt ≤ νΛ
α+µ .

Proof. Given V0 = 0, substitute this into the recurrence relation:

V1 = V0 + νΛ − (α + µ)V0.

Since V0 = 0, this simplifies to:

V1 = νΛ.

Therefore, V1 = νΛ ≥ 0, showing that Vt increases from t = 0 to t = 1.
Assume Vt ≥ 0 for some t ≥ 0. We need to show that Vt+1 ≥ Vt.
Using the recurrence relation:

Vt+1 = Vt + νΛ − (α + µ)Vt.

The difference Vt+1 − Vt is:

Vt+1 − Vt = νΛ − (α + µ)Vt.

For Vt+1 ≥ Vt, we need:

νΛ − (α + µ)Vt ≥ 0.

Rearranging this gives:

Vt ≤
νΛ

α + µ
.

Given V0 = 0 and α + µ > 0, Vt will remain less than or equal to νΛ
α+µ for all t. Therefore,

Vt+1 ≥ Vt, meaning that Vt is increasing.
To show that Vt is bounded, consider the recurrence relation:

Vt+1 = Vt + νΛ − (α + µ)Vt.

Rewrite it as:
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Vt+1 = Vt (1 − (α + µ)) + νΛ.

Define L = νΛ
α+µ . To see that Vt converges to L, rearrange the equation as:

Vt+1 − L = (Vt − L) (1 − (α + µ)) .

If α+ µ > 0, then 1− (α+ µ) < 1 and is positive, so Vt approaches L as t → ∞. Specifically,
the term (1 − (α + µ)) ensures that the difference Vt − L decreases over time, meaning Vt will
be bounded by L. □

The following theorem summarizes the global stability of the DFE.

Theorem 4.2. The model described by system (2.2) is globally asymptotically stable (GAS) at the DFE
if R0 ≤ 1.

Proof. To demonstrate GAS of the discrete model given by system (2.2), a Lyapunov function
is defined as:

Ft = b1Et + b2 It,

where the backward difference ∆F is calculated as:

∆F = Ft+1 − Ft,

= b1(Et+1 − Et) + b2(It+1 − It),

= b1(Et + βSt It − (ϵ + µ + ω)Et − Et) + b2(It + ϵEt − (τ + ζ + γ + µ + σ)It − It),

= b1(βSt It − (ϵ + µ + ω)Et) + b2(ϵEt − (τ + ζ + γ + µ + σ)It).

Taking into account that (St ≤ N − Vt ≤ Λ
µ − νΛ

α+µ = (α+µ−µν)Λ
µ(α+µ)

) according to proposition 4.1,
one gets

∆F ≤ b1(β
(α + µ − µν)Λ

µ(α + µ)
It − (ϵ + µ + ω)Et) + b2(ϵEt − (τ + ζ + γ + µ + σ)It),

=

[
b1β

(α + µ − µν)Λ
µ(α + µ)

− b2(τ + ζ + γ + µ + σ)

]
It + [b2ϵ − b1(ϵ + µ + ω)] Et,

≤ b2(τ + ζ + γ + µ + σ)

[
b1β(α + µ − µν)Λ

µ(α + µ)b2(τ + ζ + γ + µ + σ)
− 1

]
It

+ [b2ϵ − b1(ϵ + µ + ω)] Et.

Choosing b1 = ϵ, b2 = (ϵ + µ + ω), it follows that:

∆F ≤ b2(τ + ζ + γ + µ + σ)(R0 − 1)It.

Thus, ∆F ≤ 0 if R0 ≤ 1., and ∆F = 0 if Et = It = 0. This indicates (E, I) → (0, 0) as t → ∞.
Substituting E = I = 0 into the first and second equations of system (2.2), we find that

V → νΛ
α+µ and S → (α+µ−µν)Λ

µ(α+µ)
as t → ∞. This demonstrates that DFE is the maximal invariant

set in {(Vt, St, Et, It, Dt, Xt, Tt) : Ft = 0}. By Theorem 6.3 in [15], each solution associated with
model (2.2), under the given initial conditions in Γ, converges to DFE as t → ∞. □
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5 Endemic-equilibrium

This section analyzes the existence and stability of an endemic equilibrium (EE) for model
(2.2).

5.1 Existence of EE

The following lemma asserts the existence of EE.

Lemma 5.1. For model (2.2), there exists a unique EE, if R0 > 1.

Proof. At steady-state, the solution to the equations associated with system (2.2) yields:

V∗∗ =
νΛ

(α + µ)
,

S∗∗ =
(ϵ + µ + ω)(τ + ζ + γ + µ + σ)

βϵ
,

E∗∗ =
(τ + ζ + γ + µ + σ)

ϵ
I∗∗,

I∗∗ =
(α + µ − µν)ϵΛ

(α + µ)(ϵ + µ + ω)(τ + ζ + γ + µ + σ)
− µ

β
,

=
µ

β
(R0 − 1),

D∗∗ =
τ

(θ + µ + δ)
I∗∗,

X∗∗ =
ζ

(ξ + µ + η)
I∗∗,

T∗∗ =

[
γ +

ω(τ + ζ + γ + µ + σ)

ϵ
+

θτ

(θ + µ + δ)
+

ξζ

(ξ + µ + η)

]
I∗∗.

□

5.2 Stability investigation of EE

The asymptotic stability of the unique EE is established in the following theorem:

Theorem 5.2. The unique EE of model (2.2) is globally asymptotically stable (GAS) if R0 ≥ 1 and
µ ≤ 1.

Proof. Consider the system (2.2). Furthermore, define the non-linear Lyapunov function:

Ut =
1
2
[(Vt − V∗∗) + (St − S∗∗) + (Et − E∗∗) + (It − I∗∗) + (Dt − D∗∗) + (Xt − X∗∗) + (Tt − T∗∗)]2 ,

=
1
2
[(Vt + St + Lt + It + Dt + Xt + Tt)− (V∗∗ + S∗∗ + L∗∗ + I∗∗ + D∗∗ + X∗∗ + T∗∗)]2 ,

=
1
2
(Nt − N∗∗)2.
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Calculating the backward difference of Ut gives:

∆U = Ut+1 − Ut,

=
1
2
[
(Nt+1 − N∗∗)2 − (Nt − N∗∗)2] ,

=
1
2
(Nt+1 − Nt)(Nt+1 + Nt − 2N∗∗),

= −1
2
(Nt+1 − Nt)

2 + (Nt+1 − N∗∗)(Nt+1 − Nt),

≤ (Nt+1 − N∗∗)(Nt+1 − Nt).

Summing the equations of system (2.2) gives Nt+1 − Nt = Λ − (σI∗∗ + δD∗∗ + ηX∗∗)− µNt.
At steady-state, Λ − (σI∗∗ + δD∗∗ + ηX∗∗) = µN∗∗, thus:

∆U = (Nt − µNt + µN∗∗ − N∗∗)(µN∗∗ − µNt)

≤ (µ2 − µ)(Nt − N∗∗)2.

Therefore, ∆U ≤ 0 if µ ≤ 1. Thus, EE is GAS if R0 ≥ 1 and µ ≤ 1. □

6 Data fitting for discrete model

In this section, estimates for seven model parameters will be derived by analyzing the WHO’s
Global Tuberculosis Report provides data on the incidence of tuberculosis (TB) cases world-
wide [23], covering the years 2000 to 2022 (see Table 6.1). The statistical information found
in the literature will be used to infer the remaining parameters. The death rate, denoted as
µ, will be determined based on the average annual death rate from 2000 to 2022, using pop-
ulation data for India and Russia obtained from [19, 20].Similarly, as shown in Table 6.1, the
number of births, Λ, will be computed as the mean annual birth rate from 2000 to 2022.

The total population of India was N = 1 059 633 675 in 2000 [19]. Initial reported TB cases,
I0 = 1 115 718, were obtained from the World Health Organization [23]. The initial number of
individuals with MDR and XDR was also obtained from [23].

The number of vaccinated individuals can be calculated as follows:

V0 = Number of births × Vaccination rate.

The assumed exposed individuals number is:

E0 = 8 852.

The assumed treated individuals number is:

T0 = 2 000.

Consequently, the initial susceptible population is determined as:

S0 = N − (V0 + E0 + I0 + D0 + X0 + T0) = 851 497 070.
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The initial conditions of the seven compartments of the discrete model for Russia were
found to be the same as for India.

The child immunization rate, specifically the Bacillus Calmette-Guérin (BCG) vaccination
rate, refers to the portion of children between 12 and 23 months who have received the BCG
vaccination. This data is sourced from official statistics compiled by the World Bank [11,
12]. Therefore, the average vaccination rate, denoted as ν, can be calculated based on this
information.

The treatment rate for MDR-TB (θ) can be given as the annual average treatment success
rate for MDR-TB from 2000 to 2022. We have

Treatment success rate for MDR-TB for each year =
Number of individuals who succeeded in treatment for MDR-TB each year

Number of individuals with MDR-TB each year
. (6.1)

The treatment rate for XDR-TB, denoted as ξ, is determined as the average annual treatment
success rate for XDR-TB observed from 2000 to 2022. We have

Treatment success rate for XDR-TB for each year =
Number of individuals who succeeded in treatment for XDR-TB each year

Number of individuals with XDR-TB each year
. (6.2)

The disease death rate in MDR-TB (δ) can be given as the annual average death rate in MDR-
TB from 2000 to 2022. We have

Death rate in MDR-TB for each year =
Number of individuals who died due to MDR-TB each year

Number of individuals with MDR-TB each year
. (6.3)

The disease death rate in XDR-TB (η) can be given as the annual average death rate in XDR-TB
from 2000 to 2022. The death rate in XDR-TB for each year is given by:

Death rate in XDR-TB for each year =
Number of individuals who died due to XDR-TB each year

Number of individuals with XDR-TB each year
. (6.4)

The estimated values of β, γ, ϵ, σ, ω, τ, α, and ζ are obtained by minimizing the difference
between the exact solution of the suggested model (2.2) and the incidence data on TB.

Φ =
n

∑
i=1

(Iti − I∗ti
)2, (6.5)

where I∗ti
represents the observed TB infected cases at time ti and Iti is the corresponding

model-predicted value. n here represents the total number of data points that are available.
The objective function 6.5 was minimized using the Levenberg-Marquardt algorithm and the
MATLAB function fitnlm.

Figures 6.1, 6.2 illustrate the tuberculosis (TB) incidence data for Russia and India , respec-
tively, alongside the model-fitted curves generated using the parameter estimates provided in
Table 6.1.
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Figure 6.1: TB incidence data and model fit for Russia, where the data is shown in green and
the fitted model is depicted in red. The basic reproduction number R0 = 0.22 < 1.
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Figure 6.2: TB incidence data and model fit for India, where the data is shown in green and
the fitted model is depicted in red. The basic reproduction number R0 = 6.42 > 1.
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Table 6.1: Model parameters and initial conditions for Russia and India.
Parameters Russia References India References

parameters parameters
V(0) 13, 791, 833 [12] 180, 967, 005 [11]
S(0) 132, 653, 507 Calculated 851, 497, 070 Calculated
E(0) 8, 852 Assumed 8, 852 Assumed
I(0) 140, 677 [23] 1, 115, 718 [23]
D(0) 0 [23] 0 [23]
X(0) 0 [23] 0 [23]
T(0) 2, 000 Assumed 2, 000 Assumed
Λ 1, 720, 142.287 [20] 26, 469, 994.76 [19]
µ 0.015 [20] 0.007 [19]
ν 0.96 [12] 0.858 [11]
α 0.0012 Fitted 0.160 Fitted
β 1.45 × 10−6 Fitted 1.27 × 10−8 Fitted
γ 1 × 10−14 Fitted 0.043 Fitted
ϵ 0.0003 Fitted 0.004 Fitted
ω 0.254 Fitted 0.542 Fitted
τ 0.048 Fitted 4.17 × 10−6 Fitted
ζ 0.028 Fitted 3.02 × 10−6 Fitted
ξ 0.36 Calculated [23] 0.356 Calculated [23]
θ 0.49 Calculated [23] 0.504 Calculated [23]
δ 0.15 Calculated [23] 0.189 Calculated [23]
σ 2.81 × 10−6 Fitted 0.006 Fitted
η 0.21 Calculated [23] 0.319 Calculated [23]

7 Analyzing the sensitivity of R0

The analysis of the sensitivity of the fundamental reproduction number R0 vs model pa-
rameters is determined in this section. To begin with, we get the partial derivatives of the
fundamental reproduction number vs the model parameters β,γ,ϵ,ω,τ,ζ,σ,α,µ,ν. The associ-
ated partial derivatives are calculated using the following definition:

Definition 7.1. The normalized sensitivity index of R0 dependent on the differentiability on
a parameter ρ:

SR0
ρ =

ρ

R0

∂R0

∂ρ
.

The following partial derivatives are based on the definition from above:

SR0
β =

β

R0

∂R0

∂β
= 1 > 0,

SR0
γ =

γ

R0

∂R0

∂γ
=

−γ

(γ + µ + σ + τ + ζ)
,

SR0
ϵ =

ϵ

R0

∂R0

∂ϵ
= 1 − ϵ

(ω + ϵ + µ)
,

SR0
ω =

ω

R0

∂R0

∂ω
=

−ω

(ω + ϵ + µ)
,

SR0
τ =

τ

R0

∂R0

∂τ
=

−τ

(γ + µ + σ + τ + ζ)
,
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SR0
ζ =

ζ

R0

∂R0

∂ζ
=

−ζ

(γ + µ + σ + τ + ζ)
,

SR0
p =

p
R0

∂R0

∂ν
=

−(µν)

(α + µ − µν)
,

SR0
α =

α

R0

∂R0

∂α
=

(αµν)

((α + µ)(α + µ − µν))
,

SR0
σ =

σ

R0

∂R0

∂σ
=

−σ

(γ + µ + σ + τ + ζ)
,

SR0
µ =

µ

R0

∂R0

∂µ
= −(

µ

(γ + µ + σ + τ + ζ)
+

µ

(ω + ϵ + µ)
+

µ

(α + µ)
+ 1 +

µ((ν − 1))
(α + µ − µν)

).

Table 7.1: Sensitivity index for the basic reproduction number R0.
Parameters sensitivity index

µ −1.6712
ν −9.5533
α +0.5449
β +1
γ −6.8240 × 10−14

ϵ +0.9963
ω −0.9759
τ −0.5153
ζ −0.3788
σ −1.1943 × 10−04

8 Numerical results

The parameter estimation results are summarized in Table 6.1. The TB incidence data are
displayed alongside the model-fitting curve in Figures 6.1, 6.2, which were fitted using Table
6.1’s parameter values. The model demonstrates a strong fit, as evidenced by high coefficients
of determination, R2 = 0.8709 for India and R2 = 0.977 for Russia. These values indicate that
the model effectively captures the observed patterns in the real data.

Using the estimated parameter values, the calculated R0 is 6.42 for India (greater than 1),
indicating that the DFE is unstable, while the EE is asymptotically stable, as shown in Figure
6.2. Conversely, for Russia, the calculated R0 is 0.22 (less than 1), suggesting that the DFE is
asymptotically stable, while EE is unstable, as illustrated in Figure 6.1.

To further explore how specific parameters influence disease spread, Figures 8.1, 8.2
depict graphical representations of R0 versus ten parameters. The basic reproduction number
R0 shows a strong positive association with β, α, and ϵ. This indicates that an increase in
these parameters leads to a higher R0, facilitating greater disease transmission.

Conversely, an inverse relationship is observed between R0 and the remaining parame-
ters γ, ν, τ, ζ, ω, σ, and µ. Higher values of these parameters correspond to a lower R0, which
indicates a slower spread of the disease. These insights are consistent with real-world obser-
vations.
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Figure 8.1: Representation of R0 versus β, τ, γ, ϵ and α.
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Figure 8.2: Representation of R0 versus β, ν, ω, σ, and µ.

The initially presented model by Gupta et al. [9] did not take into account the impact
of chemoprophylaxis for individuals with latent TB infection, nor did consider the effects of
treatment for those with active TB disease. However, to improve upon this, D. B. Kitaro et
al. [14] attempted to enhance the model by including chemoprophylaxis treatment for latent
infections and treatment for individuals with active TB. Consequently, this study focused on
parameter estimation and demonstrated the impact of chemoprophylaxis and vaccination on
the infected, MDR, and XDR classes. The analysis utilized incidence data from India and
Russia to assess the effectiveness of these interventions.

By examining Figure 8.3, it becomes apparent the number of individuals in the infected
categories, MDR and XDR, lacking chemoprophylaxis treatment surpasses those receiving
such treatment among the exposed groups. Furthermore, with an increase in the chemopro-
phylaxis treatment parameter ω, it becomes evident that administering chemoprophylaxis to
Exposed individuals significantly curbs the transmission of tuberculosis.
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Figure 8.3: Effect of the chemoprophylaxis treatment rate on the compartemants of the discrete
model (2.2).

In Figure 8.4, the decrease in the infected, MDR, and XDR classes with an increase in
BCG vaccination rate can be explained by the protective effects of the vaccine. BCG (Bacillus
Calmette-Guérin) is a vaccine primarily used against TB and is known to provide partial
protection against certain strains of the bacteria that cause TB.

When more individuals receive the BCG vaccine, it creates a higher level of immunity
within the population. This increased immunity makes it more difficult for the TB bacteria,
including MDR, and XDR strains, to infect individuals who have been vaccinated. As a result,
the spread of these drug-resistant strains is reduced, leading to a decrease in the number of
infected individuals within these classes.

In summary, the effectiveness of BCG vaccination in reducing the prevalence of MDR-TB,
and XDR-TB strains is demonstrated by the inverse relationship between vaccination rate and
the size of these infected classes depicted in Figure 8.4.

Overall, the numerical investigation provide evidence that the inclusion of the parameter
ω of chemoprophylaxis treatment and vaccination rate ν in the model leads to a more effective
reduction in the transmission of TB, particularly in cases involving MDR, and XDR compart-
ments. This improvement is observed in contrast to the model that lacks chemoprophylaxis
treatment for Exposed individuals and vaccination rate.
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Figure 8.4: Effect of the vaccination rate on the compartments of the discrete model (2.2).

Figure 8.5 illustrates a comparison between the discrete model and the continuous model,
concerning the number of infected cases in Russia. The discrete model exhibits a good fit,
evidenced by a high coefficient of determination value of R2 = 0.98. However, the coefficient
of determination for the continuous model, R2 = 0.93, is lower than that of the discrete model.
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Figure 8.5: Comparision of the discrete model and continuous model vs Russia’s Data.

The discrete model fits better because its structure is well-suited to capturing the dy-
namics of time-stepped data, particularly when the data is collected in discrete intervals, such
as daily case counts. Additionally, if the real-world data has inherent discrete properties or
exhibits abrupt changes over time, the discrete model can naturally accommodate these vari-
ations more effectively. Furthermore, discrete models are more flexible in capturing nonlinear
behaviors and sudden changes, such as bifurcations, leading to a more accurate representation
of the observed data.

9 Conclusion

This research developed and analyzed a discrete mathematical model of TB transmission,
focusing on MDR-TB and XDR-TB cases. The model, adapted from a continuous-time frame-
work using the Euler forward method with a step size of h = 1, incorporates the effects of
chemoprophylaxis for the Exposed group and vaccination rates. The study used the next-
generation matrix principle to calculate the basic reproduction ratio, R0, and analyzed the
model’s characteristics, including the stability of disease-free and endemic equilibrium points.
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By adjusting the model parameters with actual TB incidence data from India and Russia,
the research estimated R0 as 6.42 for India and 0.22 for Russia, indicating a higher risk of TB
transmission in India. The model’s predictions aligned well with actual TB cases, suggest-
ing its potential for forecasting the disease’s future status. Sensitivity analysis revealed that
increasing chemoprophylaxis for exposed individuals reduces transitions to MDR and XDR
states, while BCG vaccination improves immunity and decreases transmission. Given TB’s
higher prevalence in India compared to Russia, urgent actions are recommended, including
enhanced treatment, better healthcare facilities, and widespread educational campaigns to
reduce TB impact in India.
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