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Abstract. This paper aims to explore the existence results of a certain type of Caputo
fractional q-difference equations in Banach spaces. To achieve this goal, we employ a
fixed point theorem that relies on the concept of measure of noncompactness and the
convex-power condensing operator. We give an illustrative example in the last section.
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1 Introduction

Fractional differential equations have recently been applied in various areas of engineering,
mathematics, physics, and other applied sciences. For more details on the applications of
fractional calculus, the reader is directed to the books of Herrmann [18], Hilfer [19] and
Tarasov [32]. For some fundamental results in the theory of fractional calculus and fractional
differential equations we refer the reader to the monographs of Abbas et al. [1–3], Kilbas et
al. [21], Samko et al. [31], and Zhou et al. [33].

The measure of noncompactness is a fundamental tool used in the theory of nonlinear
analysis. This concept was first introduced by Alvàrez in his pioneering article [8], and later
further developed by Mönch [24], Banas̀ and Goebel [10], and other researchers in the litera-
ture. The measure of noncompactness finds applications in various fields of applied mathe-
matics, such as the theory of differential equations [5, 25]. In [14, 26, 30], Salim et al. applied
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the notion of measure of noncompactness to examine differential equations in Banach spaces.

In [22], the authors investigated the existence and Ulam-Hyers-Rassias stability of random
solutions to the following random implicit fractional q-difference equation:

(cDζ
q α)(ϑ, δ) = ψ(ϑ, α(ϑ, δ), (cDζ

q α)(ϑ, δ), δ); ϑ ∈ Θ := [0, κ], δ ∈ Ψ,

α(0, δ) = α0(δ); δ ∈ Ψ,

where q ∈ (0, 1), ζ ∈ (0, 1], κ > 0, (Ψ,A) is a measurable space, α0 : Ψ → R is a mea-
surable function, ψ : Θ × R2 × Ψ → R is a given function, and cDζ

q is the Caputo frac-
tional q-difference derivative of order ζ. The outcomes are given by the implementation of
the fixed point theory, including Itoh’s random fixed point theorem, the nonlinear alterna-
tive of Schaefer’s type demonstrated by Dhage, and another random fixed point theorem
of Dhage, specifically applied in Banach algebras. Furthermore, additional insights regard-
ing the extremal and random extremal solutions are established based on the Carathéodory
conditions and certain forms of monotonicity. The general theory of linear q-difference equa-
tions is investigated in the works of Adams [4] and Carmichael [13]. Meanwhile, Ahmad et
al. conducted a study on several existence results for various types of nonlinear fractional
q-difference equations in [6, 7, 16]. In [11], Boutiara et Benbachir studied some existence and
uniqueness results to a fractional q-difference coupled system with integral boundary con-
ditions via topological degree theory. The positive solutions of q-difference equations were
examined by El-Shahed and Hassan [15]. Finally, the authors of [29] delved into the topolog-
ical structure of solution sets for fractional q-difference inclusions, using Filippov’s theorem.

In this paper, we consider the following fractional q-difference equation

(cDϖ
q ξ)(ϑ) = ℘(ϑ, ξ(ϑ)); ϑ ∈ Θ := [0,κ], (1.1)

with the initial condition
ξ(0) = ξ0 ∈ 𭟋, (1.2)

where q ∈ (0, 1), ϖ ∈ (0, 1], κ > 0, ℘ : Θ ×𭟋 → 𭟋 is a given continuous function, 𭟋 is a
real (or complex) Banach space with norm ∥ · ∥, and cDϖ

q is the Caputo fractional q-difference
derivative of order ϖ.

The present article has been organized as follows: In Section 2, some basic definitions and
lemmas related to fractional calculus are recalled. In Section 3, by means of the fixed point
theory combined with the concept of measure of noncompactness and the convex-power
condensing operator, the existence of solutions for the problem (1.1)-(1.2) are obtained. At
the end, we give an example to illustrate our main findings.

2 Preliminaries

Let C(Θ) := C(Θ,𭟋) = {℘ : Θ → 𭟋,℘ continuous} be the Banach space with norm

∥ξ∥∞ := sup
ϑ∈Θ

∥ξ(ϑ)∥,
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L1(Θ) denotes the space of measurable functions χ : Θ → 𭟋 which are Bochner integrable
with the norm

∥χ∥1 =
∫

Θ
∥χ(t)∥dt.

For ω ∈ R, we set

[ω]q =
qω − 1
q − 1

.

The q-analogue of the power (ω − ϖ)n is

(ω − ϖ)(0) = 1, (ω − ϖ)(n) = Πn−1
k=0 (ω − ϖqk); ω, ϖ ∈ R, n ∈ N.

(ω − ϖ)(m) = ωmΠ∞
k=0

(
ω − ϖqk

ω − ϖqk+m

)
; ω, ϖ, m ∈ R.

Definition 2.1. [20] We define the q-gamma function by

Γq(ϑ) =
(1 − q)(ϑ−1)

(1 − q)ϑ−1 ; ϑ ∈ R − {0,−1,−2, . . .}

Definition 2.2. [20] We define the q-beta function by

βq(ϕ, φ) =
∫ 1

0
(1 − ϑ)(φ−1)ϑϕ−1dqϑ.

Notice that

Γq(1 + ϑ) = [ϑ]qΓq(ϑ), and βq(ϕ, φ) =
Γq(ϕ)Γq(φ)

Γq(ϕ + φ)
.

Definition 2.3. [20] Let ξ : Θ → 𭟋 a function. We define the q-derivative of order n ∈ N of
ξ by (D0

qξ)(ϑ) = ξ(ϑ),

(Dqξ)(ϑ) := (D1
qξ)(ϑ) =

ξ(ϑ)− ξ(qϑ)

(1 − q)ϑ
; ϑ ̸= 0, (Dqξ)(0) = lim

ϑ→0
(Dqξ)(ϑ),

and
(Dn

q ξ)(ϑ) = (DqD
n−1
q ξ)(ϑ); ϑ ∈ Θ, n ∈ {1, 2, . . .}.

Set Θϑ := {ϑqn : n ∈ N} ∪ {0}.

Definition 2.4. [20] Let ξ : Θϑ → 𭟋 a function. We define the q-integral of ξ by

(Iqξ)(ϑ) =
∫ ϑ

0
ξ(s)dqs =

∞

∑
n=0

ϑ(1 − q)qnξ(ϑqn).

(Dq Iqξ)(ϑ) = ξ(ϑ), while if ξ is continuous at 0, then

(IqDqξ)(ϑ) = ξ(ϑ)− ξ(0).

Let ξ : Θ → 𭟋 a function and ϖ ∈ R+ := [0, ∞).
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Definition 2.5. [5] We define the Riemann–Liouville fractional q-integral of order ϖ of a
function ξ by (I0

q ξ)(ϑ) = ξ(ϑ), and

(Iϖ
q ξ)(ϑ) =

∫ ϑ

0

(ϑ − qs)(ϖ−1)

Γq(ϖ)
ξ(s)dqs; ϑ ∈ Θ.

Lemma 2.6. [27] For λ ∈ (−1, ∞):

(Iϖ
q (ϑ − a)(λ))(ϑ) =

Γq(λ + 1)
Γ(λ + ϖ + 1)

(ϑ − a)(λ+ϖ); 0 ≤ a < ϑ < κ.

For a = λ = 0:

(Iϖ
q 1)(ϑ) =

1
Γq(1 + ϖ)

ϑ(ϖ).

Definition 2.7. [28] We define the Riemann–Liouville fractional q-derivative of order ϖ of a
function ξ by (D0

qξ)(ϑ) = ξ(ϑ), and

(Dϖ
q ξ)(ϑ) = (D

[ϖ]
q I[ϖ]−ϖ

q ξ)(ϑ); ϑ ∈ Θ,

where [ϖ] is the integer part of ϖ.

Definition 2.8. [28] We define the Caputo fractional q-derivative of order ϖ of a function ξ
by (CD0

qξ)(ϑ) = ξ(ϑ), and

(CDϖ
q ξ)(ϑ) = (I[ϖ]−ϖ

q D
[ϖ]
q ξ)(ϑ); ϑ ∈ Θ.

Lemma 2.9. [28] Let ϖ ∈ R+.

(Iϖ
q

CDϖ
q ξ)(ϑ) = ξ(ϑ)−

[ϖ]−1

∑
k=0

ϑk

Γq(1 + k)
(Dk

qξ)(0).

In particular, if ϖ ∈ (0, 1), then

(Iϖ
q

CDϖ
q ξ)(ϑ) = ξ(ϑ)− ξ(0).

Lemma 2.10. (1.1)-(1.2) is equivalent to the integral equation

ξ(ϑ) = ξ0 + (Iϖ
q ℘)(ϑ).

MX denote the class of all bounded subsets of a metric space X.

Definition 2.11. [10] Let X be a complete metric space and ϱ : MX → R+ a map. ϱ is called
a measure of noncompactness on X if, for all k,k1,k2 ∈ MX,

(a) Regularity: ϱ(k) = 0 if and only if k is precompact,

(b) Invariance under closure: ϱ(k) = ϱ(k),

(c) Semi-additivity: ϱ(k1 ∪ k2) = max{ϱ(k1), ϱ(k2)}.
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Definition 2.12. [10] Let 𭟋 be a Banach space and Ω𭟋 be the family of bounded subsets of
𭟋. The Kuratowski measure of noncompactness is the map ϱ : Ω𭟋 → R+ defined by

ϱ(T) = inf{ϵ > 0 : T ⊂ ∪m
j=1Tj, diam(Tj) ≤ ϵ} ,

where T ∈ Ω𭟋.

Properties. The map ϱ satisfies:

(1) ϱ(T) = 0 ⇔ T is compact (T is relatively compact).

(2) ϱ(T) = ϱ(T).

(3) T1 ⊂ T2 ⇒ ϱ(T1) ≤ ϱ(T2).

(4) ϱ(T1 + T2) ≤ ϱ(T1) + ϱ(T2).

(5) ϱ(λT) = |λ|ϱ(T), λ ∈ R.

(6) ϱ(convT) = ϱ(T).

Lemma 2.13. [9] Let k ⊂ C(Θ) be bounded and equicontinuous. Then ϱ(k(ϑ)) is continuous on Θ
and ϱC(k) = maxϑ∈Θ ϱ(k(ϑ)).

Lemma 2.14. [9] Let k ⊂ 𭟋 be bounded. Then for each ϵ > 0, there exists a sequence {ξn}n≥1 ⊂ k
such that

ϱ(k) ≤ 2ϱ({ξn}n≥1) + ϵ.

Definition 2.15. A subset k ⊂ L1(Θ) is uniformly integrable if there exists ψ ∈ L1(Θ) such
that

ξ(ϑ) ≤ ψ(ϑ); for all ξ ∈ k and a.e. ϑ ∈ Θ.

Lemma 2.16. [17] Let {ξn}n≥1 ⊂ L1(𭟋) be an uniformly integrable, then the function ϑ 7→
ϱ({ξn}n≥1) is measurable, and

ϱ

({∫ ϑ

0
ξn(s)ds

}
n≥1

)
≤ 2

∫ ϑ

0
ϱ({ξn(s)}n≥1)ds.

We denote by c̄o, the closure of convex hull.

Definition 2.17. Let X be a real Banach space. An operator ℵ : X → X is a convex-power
condensing about ξ0 and n0, if ℵ is a continuous and bounded operator, and there exist
ξ0 ∈ X and a positive integer n0 such that for any bounded and nonprecompact subset
S ⊂ X,

ϱ(ℵ(n0,ξ0)(S)) < ϱ(S),

where
ℵ(1,ξ0)(S) = ℵ(S), ℵ(n,ξ0)(S) = ℵ(c̄o{ℵ(n−1,ξ0)(S)}); n = 2, 3, · · ·

Theorem 2.18. [23] Let X be a real Banach space and k ⊂ X be a bounded, closed and convex set in
X. If there exist ξ0 ∈ k and a positive integer n0 such that ℵ : k → k be a convex-power condensing
operator about ξ0 and n0, then the operator ℵ has at least one fixed point in k.
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3 Main results

Definition 3.1. By a solution of the problem (1.1)-(1.2) we mean a continuous function ξ that
satisfies the equation (1.1) on Θ and the initial condition (1.2).

Assumptions:

(H1) The function ϑ 7→ ℘(ϑ, ξ) is measurable on Θ for each ξ ∈ 𭟋, and the function ξ 7→
℘(ϑ, ξ, χ) is continuous on 𭟋 for a.e. ϑ ∈ Θ.

(H2) There exists p ∈ C(Θ, R+), such that

∥℘(ϑ, ξ)∥ ≤ (1 + ∥ξ∥)p(ϑ); f or a.e. ϑ ∈ Θ, and each ξ ∈ 𭟋,

and for some positive integer ν, we have

p∗ = sup
ϑ∈Θ

p(ϑ) <
(Γq(1 + νϖ))

1
ν

4κϖ
.

(H3) For each bounded set k ⊂ 𭟋 and for each ϑ ∈ Θ, we have

ϱ(℘(ϑ,k)) ≤ p(ϑ)ϱ(k).

Theorem 3.2. Assume (H1)− (H3) hold. If

ℓ :=
p∗κϖ

Γq(ϖ + 1)
< 1, (3.1)

then the problem (1.1)-(1.2) admits at least one solution defined on Θ.

Proof. Consider the operator Ξ : C(Θ) → C(Θ) defined by

(Ξξ)(ϑ) = ξ0 +
∫ ϑ

0

(ϑ − qs)(ϖ−1)

Γq(ϖ)
℘(s, ξ(s))dqs; ϑ ∈ Θ. (3.2)

Set

R >
∥ξ0∥+ ℓ

1 − ℓ
,

and ∇R := {w ∈ C(Θ) : ∥w∥∞ ≤ R}.
For any ξ ∈ C(Θ) and each ϑ ∈ Θ, we have

∥(Ξξ)(ϑ)∥ ≤ ∥ξ0∥+
∫ ϑ

0

(ϑ − qs)(ϖ−1)

Γq(ϖ)
∥℘(s, ξ(s))∥dqs

≤ ∥ξ0∥+
∫ ϑ

0

(ϑ − qs)(ϖ−1)

Γq(ϖ)
p(s)(1 + ∥ξ(s)∥)dqs

≤ ∥ξ0∥+ p∗(1 + R)
∫ ϑ

0

(ϑ − qs)(ϖ−1)

Γq(ϖ)
dqs

≤ ∥ξ0∥+
p∗κϖ(R + 1)

Γq(1 + ϖ)

= ∥ξ0∥+ ℓ(R + 1)
≤ R.
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Thus
∥Ξ(ξ)∥∞ ≤ R. (3.3)

Then Ξ(∇R) ⊂ ∇R.
Step 1. Ξ : ∇R → ∇R is continuous.
Let {ξn}n∈N be a sequence such that ξn → ξ in ∇R. Then, for each ϑ ∈ Θ, we have

∥(Ξξn)(ϑ)− (Ξξ)(ϑ)∥ ≤
∫ ϑ

0

(ϑ − qs)(ϖ−1)

Γq(ϖ)
∥(℘(s, ξn(s))− ℘(s, ξ(s))∥dqs.

Since ξn → ξ as n → ∞, then from Lebesgue’s dominated convergence theorem we get

∥Ξ(ξn)− Ξ(ξ)∥∞ → 0 as n → ∞.

Step 2. Ξ(∇R) is bounded and equicontinuous.
Since Ξ(∇R) ⊂ ∇R and ∇R is bounded, then Ξ(∇R) is bounded.
Next, let ϑ1, ϑ2 ∈ Θ, ϑ1 < ϑ2 and let ξ ∈ ∇R. Thus, we have

∥(Ξξ)(ϑ2)− (Ξξ)(ϑ1)∥

≤
∥∥∥∥∥
∫ ϑ2

0

(ϑ2 − qs)(ϖ−1)

Γq(ϖ)
℘(s, ξ(s))dqs −

∫ ϑ1

0

(ϑ1 − qs)(ϖ−1)

Γq(ϖ)
℘(s, ξ(s))dqs

∥∥∥∥∥ .

Hence, we get

∥(Ξξ)(ϑ2)− (Ξξ)(ϑ1)∥ ≤
∫ ϑ2

ϑ1

(ϑ2 − qs)(ϖ−1)

Γq(ϖ)
p(s)(1 + ∥ξ(s)∥)dqs

+
∫ ϑ1

0

∣∣∣∣∣ (ϑ2 − qs)(ϖ−1)

Γq(ϖ)
− (ϑ1 − qs)(ϖ−1)

Γq(ϖ)

∣∣∣∣∣ p(s)(1 + ∥ξ(s)∥)dqs

≤ p∗(1 + R)
∫ ϑ2

ϑ1

(ϑ2 − qs)(ϖ−1)

Γq(ϖ)
dqs

+ p∗(1 + R)
∫ ϑ1

0

∣∣∣∣∣ (ϑ2 − qs)(ϖ−1)

Γq(ϖ)
− (ϑ1 − qs)(ϖ−1)

Γq(ϖ)

∣∣∣∣∣ dqs.

As ϑ1 −→ ϑ2, the right-hand side of the above inequality tends to zero.

Step 3. Ξ : c̄oΞ(∇R) → c̄oΞ(∇R) is a convex-power condensing operator.
Set Ω = c̄oΞ(∇R). Let χ ∈ Ω. We will prove that there exists a positive integer n0 such that
for any bounded and nonprecompact subset k ⊂ Ω,

ϱC(N(n0,χ)(k)) ≤ ϱC(k).

For any k ⊂ Ω, and χ ∈ k, N(n,χ)(k) ⊂ ∇R is equicontinuous. Therefore, from Lemma 2.13
we have

ϱC(N(n,χ)(k)) = max
ϑ∈Θ

ϱ(N(n,χ)(k)(ϑ)); n = 1, 2, · · · (3.4)

Let ϵ > 0. By Lemma 2.14, there exists a sequence {ξn}n≥1 ⊂ k such that

ϱ(Ξ(1,χ)(k)(ϑ)) = ϱ(Ξ(k)(ϑ))

≤ 2ϱ

{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
℘(s, {ξn(s)}n≥1)dqs

}
+ ϵ.
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Now, by Lemma 2.16, and (H3) we have

ϱ(Ξ(1,χ)(k)(ϑ)) ≤ 4

{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
ϱ(℘(s, {ξn(s)}n≥1))dqs

}
+ ϵ

≤ 4p∗
{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
ϱ({ξn(s)}n≥1)dqs

}
+ ϵ

≤ 4p∗ϱC(k)
{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
dqs

}
+ ϵ

≤ 4p∗ϑϖ

Γq(1 + ϖ)
ϱC(k) + ϵ.

Since the last inequality is true for every ϵ > 0, we infer that

ϱ(Ξ(1,χ)(k)(ϑ)) ≤ 4p∗ϑϖ

Γq(1 + ϖ)
ϱC(k).

Again by using Lemma 2.14, for any ϵ > 0, there exists a sequence {wn}n≥1 ⊂ c̄o{Ξ(1,χ)(k)}
such that

ϱ(Ξ(2,χ)(k)(ϑ)) = ϱ(Ξ(c̄o{Ξ(1,χ)(k)})(ϑ))

≤ 2ϱ

{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
℘(s, {wn(s)}n≥1)dqs

}
+ ϵ

≤ 4

{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
ϱ(℘(s, {wn(s)}n≥1))dqs

}
+ ϵ

≤ 4p∗
{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
ϱ({wn(s)}n≥1)dqs

}
+ ϵ

≤ 4p∗
{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
ϱ(c̄o{N(1,χ)(k)}(s))dqs

}
+ ϵ

≤ 4p∗
{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
ϱ(N(1,χ)(k)(s))dqs

}
+ ϵ

≤ 4p∗
4p∗

Γq(1 + ϖ)
ϱC(k)

{∫ ϑ

0

(ϑq − s)(ϖ−1)sϖ

Γq(ϖ)
dqs

}
+ ϵ

≤ (4p∗)2

Γq(1 + ϖ)
ϱC(k)

{∫ ϑ

0

(ϑq − s)(ϖ−1)sϖ

Γq(ϖ)
dqs

}
+ ϵ.
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On the other hand, we have

∫ ϑ

0

(ϑq − s)(ϖ−1)sϖ

Γq(ϖ)
dqs =

(ϑq)2ϖ

Γq(ϖ)

∫ ϑ

0

(
1 − s

ϑq

)(ϖ−1) ( s
ϑq

)ϖ dqs
ϑq

≤ ϑ2ϖ

Γq(ϖ)

∫ 1

0
(1 − x)(ϖ−1)xϖdqx

=
ϑ2ϖ

Γq(ϖ)
βq(ϖ, 1 + ϖ)

=
ϑ2ϖ

Γq(ϖ)

Γq(ϖ)Γq(1 + ϖ)

Γq(1 + 2ϖ)

= ϑ2ϖ Γq(1 + ϖ)

Γq(1 + 2ϖ)
.

Hence, we obtain

ϱ(Ξ(2,χ)(k)(ϑ)) ≤ (4p∗)2

Γq(1 + ϖ)
ϱC(k)

{
ϑ2ϖ Γq(1 + ϖ)

Γq(1 + 2ϖ)

}
+ ϵ

≤ (4p∗)2ϑ2ϖ

Γq(1 + 2ϖ)
ϱC(k) + ϵ.

As the last inequality is true for every ϵ > 0, we get

ϱ(Ξ(2,χ)(k)(ϑ)) ≤ (4p∗)2ϑ2ϖ

Γq(1 + 2ϖ)
ϱC(k).

Repeating the process for n = 3, 4, · · · , for each ϑ ∈ Θ, we can shown by mathematical
induction that

ϱ(Ξ(n,χ)(k)(ϑ)) ≤ (4p∗)nϑnϖ

Γq(1 + nϖ)
ϱC(k). (3.5)

By induction, suppose that (3.5) holds for some n and check (3.5) for n + 1.
By using Lemma 2.14, for any ϵ > 0, there exists a sequence {yn}n≥1 ⊂ c̄o{Ξ(n,χ)(k)} such
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that

ϱ(Ξ(n+1,χ)(k)(ϑ)) = ϱ(Ξ(c̄o{Ξ(n,χ)(k)})(ϑ))

≤ 2ϱ

{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
℘(s, {yn(s)}n≥1)dqs

}
+ ϵ

≤ 4

{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
ϱ(℘(s, {yn(s)}n≥1))dqs

}
+ ϵ

≤ 4p∗
{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
ϱ({yn(s)}n≥1)dqs

}
+ ϵ

≤ 4p∗
{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
ϱ(c̄o{y(n,χ)(k)}(s))dqs

}
+ ϵ

≤ 4p∗
{∫ ϑ

0

(ϑq − s)(ϖ−1)

Γq(ϖ)
ϱ(y(n,χ)(k)(s))dqs

}
+ ϵ

≤ 4p∗
(4p∗)n

Γq(1 + nϖ)

{∫ ϑ

0

(ϑq − s)(ϖ−1)snϖ

Γq(ϖ)
dqs

}
+ ϵ

≤ (4p∗)n+1ϑ(n+1)ϖ

Γq(1 + (n + 1)ϖ)
ϱC(k) + ϵ.

Thus, as the last inequality is true for every ϵ > 0, we get

ϱ(Ξ(n+1,χ)(k)(ϑ)) ≤ (4p∗)n+1ϑ(n+1)ϖ

Γq(1 + (n + 1)ϖ)
ϱC(k).

From (3.4), we get

ϱC(Ξ(n,χ)(k)) = max
ϑ∈Θ

ϱ(Ξ(n,χ)(k)(ϑ)) ≤ (4p∗)nκnϖ

Γq(1 + nϖ)
ϱC(k).

Since
(4p∗)nκnϖ

Γq(1 + nϖ)
=

(4p∗)nκnϖ

[nϖ]q
(1−q)(nϖ−1)

(1−q)nϖ−1

→ 0 as n → ∞,

then, there exists a positive integer n0 = ν, such that

(4p∗)n0κn0ϖ

Γq(1 + n0ϖ)
< 1.

Hence, for any bounded and nonprecompact subset k ⊂ Ω, we have

ϱC(Ξ(n0,χ)(k)) < ϱC(k).

Therefore, Ξ : Ω → Ω is a convex-power condensing operator. Theorem 2.18 implies that Ξ
has a fixed point which is a solution of problem (1.1)-(1.2).
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4 Example

Let the Banach space

l1 =

{
ξ = (ξ1, ξ2, . . . , ξn, . . .) :

∞

∑
n=1

|ξn| < ∞

}

under the norm

∥ξ∥l1 =
∞

∑
n=1

|ξn|.

Consider the problem (cD
1
2
1
4
ξn)(ϑ) = ℘n(ϑ, ξ(ϑ)); ϑ ∈ [0, 1],

ξ(0) = (0, 0, . . . , 0, . . .),
(4.1)

where ℘n(ϑ, ξ) =
ϑ

−1
4 (2−n + ξn(ϑ)) sin ϑ

64L(1 + ∥ξ∥l1 +
√

ϑ)(1 + ∥ξ∥l1)
; ϑ ∈ (0, 1],

℘n(0, ξ) = 0, .

with

L >
1

8Γ 1
4
( 1

2 )
, ℘ = (℘1,℘2, . . . ,℘n, . . .), and ξ = (ξ1, ξ2, . . . , ξn, . . .).

For each ϑ ∈ (0, 1], we have

∥℘(ϑ, ξ(ϑ))∥l1 =
∞

∑
n=1

|℘n(s, ξn(s))|

≤ ϑ
−1
4 | sin ϑ|

64L(1 + ∥ξ∥l1 +
√

ϑ)(1 + ∥ξ∥l1)
(1 + ∥ξ∥l1).

Thus, the hypothesis (H2) is satisfied withp(ϑ) =
ϑ

−1
4 | sin ϑ|
64L

; ϑ ∈ (0, 1],

p(0) = 0.

So; we have p∗ ≤ 1
64L , and then

ℓ =
p∗κϖ

Γq(1 + ϖ)
≤ 1

64LΓ 1
4
(1 + 1

2 )
<

1
64

< 1.

Hence, by Theorem 3.2 the problem (4.1) has at least one solution defined on [0, 1].
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5 Conclusions

In the present research, we have investigated existence criteria for the solutions of Caputo
fractional q-difference equations in Banach spaces. To achieve the desired results for the given
problem, the fixed-point approach was used with the concept of measure of noncompactness
and the convex-power condensing operator. An example is provided to demonstrate how the
major results can be applied. Our results in the given configuration are novel and substan-
tially contribute to the literature on this new field of study. We feel that there are multiple
potential study avenues such as coupled systems, problems with infinite delays, and many
more. We hope that this article will serve as a starting point for such an undertaking.
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