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Résumé In this paper, we discuss the approximation issue of queueing systems governed at least by a general
unknown distribution G, using the strong stability method. Since the proximity of the characteristics of the real
and ideal systems depends on the density function of the unknown general law G, it may be first estimated using
the kernel density method taking into account boundary effects. Numerical applications are provided to support
the theoretical results.
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8.1 Introduction

The aim of this work is to show the applicability of the strong stability method [1, 2, 7]
to precise the proximity of the characteristics of two systems, when at least one of the
distributions governing one of the systems is general and unknown so its density function
must be estimated by using the kernel density estimation method [9, 8].

The strong stability method states that the perturbation done must be small, in the
sense that the general law G of arrivals (resp. service times) must be close but not equal
to the Poisson (resp. exponential) one. Consequently, the density function of the law G
must be close to the density function of the exponential law which is defined on a bounded
support [0,∞[. Thus, the boundary effects must be taken in consideration when using the
kernel density method [10, 6].

8.2 Kernel density estimation method

Let X1, ..., Xn be a sample coming from a random variable X of density function f and
distribution F . The Parzen-Rosenblatt kernel estimate [9, 8] of the density f(x) for each
point x ∈ R is given by :

fn(x) =
1

nhn

n∑
j=1

K(
x−Xj

hn
) (8.1)
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K is a symmetric density function called kernel and hn is called bandwidth.

8.2.1 Boundary effects

Several results are known in the literature when the density function is defined on the
real line R [8, 9]. In the case of a density function defined on a bounded support, the
boundary effects are present. To resolve this problem, many recent methods have been
elaborated [10, 6].

Schuster estimator ("mirror image")

Schuster [10] suggests to create the mirror image of the data in the other side of the
boundary and then apply the estimator (8.1) for the set of the initial data and their
reflection. f(x) is then estimated, for x ≥ 0, as follows :

f̃n(x) =
1

nhn

n∑
j=1

[K(
x−Xj

hn
) +K(

x+Xj

hn
)] (8.2)

Asymmetric kernel estimators

A simple idea to avoid boundary effects, is the use of a flexible kernel, which never
assign a weight out of the support of the density function and which correct automatically
and implicitly the boundary effects. We can cite the asymmetric kernels [6] given by :

f̂b(x) =
1

n

n∑
i=1

K(x, b)(Xi), (8.3)

where b is the bandwidth and the asymmetric kernel K can be taken as a Gamma density
KG with parameters (x/b+ 1, b), given by :

KG(
x

b
+ 1, b)(t) =

tx/be−t/b

bx/b+1Γ (x/b+ 1)
, (8.4)

8.3 Strong stability in M/M/1 system after perturbation of
arrival flow

Théorème 8.1 [4]
Suppose that the charge (λ

γ
) of the M/M/1 system is smaller than 1. Therefore, for all β

such that 1 < β < γ
λ
, the imbedded Markov chain Xn is υ-strongly stable, after a small

perturbation of the inter-arrival times, for υ(k) = βk, and ‖P ∗ − P‖υ ≤ (1 + β)w.

In addition, if w < (1−ρ)(γ−λβ)
(1+β)(2γ−λ(1+β)) , we have :
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Err = ‖π∗ − π‖υ (8.5)

≤ (1 + β)(2γ − λ(1 + β))(γ − λ)w
(β−1)(γ−λβ)3
(β−1)γ+λβ − (2γ − λ(1 + β))(1 + β)(γ − λβ)w

w = w(H,Eλ) =

∫ ∞
0

|H − Eλ|(dt) (8.6){
π∗k = lim

n→∞
Pr(X∗n = k), k = 0, 1, 2, ...,

πk = lim
n→∞

Pr(X=
n k), k = 0, 1, 2, ...,

(8.7)

ρ = β λ
γ− γ

β
+λ

.

8.4 Strong stability in M/M/1 system after perturbation of
service times

Théorème 8.2 [5]
Suppose that the charge λ

µ
of theM/M/1 system is smaller than 1. Then, for all β such that

1 < β < µ
λ
, the imbedded Markov chain Xn is υ-strongly stable, after a small perturbation

of the service times, for υ(k) = βk.
Suppose that

∫ +∞
0

t|F − Eµ|(dt) ≤ w′

λ
, then : ‖P − P ′‖υ ≤ β0w

′.

In addition, if w′ ≤ (1−ρ)
Cβ0

, we have :

Err′ = ‖π − π′‖υ ≤ β0w
′CC ′(1− ρ− Cβ0w′)−1 (8.8)

w′ = w′(F,Eµ) =

∫ +∞

0

|F − Eµ|(dt) (8.9)

ρ = µ
β(µ+λ−βλ) < 1, C ′ = µ−λ

µ−λβ , C = 2µ−λ(1+β)
µ−λβ .

β0 = max
{
β : 1 < β < µ

λ
and

∫ +∞
0

eλ(β−1)t|F − Eµ(t)|(dt) < βw′
}

8.5 Kernel density method for the approximation of the G/M/1
system by the M/M/1 system using the strong stability method

We want to apply the kernel density method to estimate numerically the proximity of
the G/M/1 and M/M/1 systems, by evaluating the variation distance w defined in (8.6)
and the error Err defined in (8.5) between the stationary distributions of the tow according
systems when applying the strong stability method.
We apply the same steps of the algorithm given in [4, 5]. The programming is done with
Matlab 6.5 environment.



42 Aïcha BARECHE

8.5.1 Simulation study 1

First case : Consider a G/M/1 system such that the density function of the general
law G is given by :

g(x) =

{
1
2
e−x + e−2x, if x ≥ 0 ;

0, otherwise. (8.10)

By generating a sample coming from the general law G with the density function g(x)
defined in (8.10), we use the kernel density method to estimate this latter by using the
different estimators given in the three following cases :
Second case :We use the density function gn(x) found by applying the Parzen-Rosenblatt
estimator defined in (8.1).
Third case : We use the density function g̃n(x) found by applying the Schuster estimator
defined in (8.2).
Fourth case : We use the density function ĝn(x) found by applying the asymmetric kernel
estimator defined in (8.3) with the Gamma kernel given in (8.4).
For the last three cases, we take : the sample size n = 200, the number of simulations
R = 100. In all the cases, we introduce the service mean rate γ = 10.
We obtain the results in Table 8.1 :

Table 8.1. w and Err measures for different estimators

g(x) gn(x) g̃n(x) ĝb(x)

Variation distance 0.0711 0.2104 0.0985 0.0820
w

Error Err 0.21 0.35 0.26

8.6 Kernel density method for the approximation of the M/G/1
system by the M/M/1 system using the strong stability method

We want to apply the kernel density method to estimate numerically the proximity
of the M/G/1 and M/M/1 systems, by evaluating the variation distance w′ defined in
(8.9) and the error Err′ defined in (8.8) between the stationary distributions of the tow
according systems when applying the strong stability method.

8.6.1 Simulation study 2

We follow the same process used in the simulation study 1.
Consider an M/Cox2/1 system such that the law of inter-arrivals is assumed to be ex-
ponential with parameter λ and the service law is effectuated in two steps, it’s density
function is given by :
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g(x) =


(1− a)µ1e

−µ1x + aµ2
µ2−µ1µ1e

−µ1x + aµ1
µ1−µ2µ2e

−µ2x, if x ≥ 0 and µ1 6= µ2 ;
(1− a)µ1e

−µ1x + aµ1e
−µ1x(µ1x), if x ≥ 0 and µ1 = µ2 ;

0, otherwise.

We take the parameters of the law Cox2 : µ1 = 3, µ2 = 10, a = 0.005. In all the cases, we
introduce the inter-arrivals mean rate : λ = 0.5. We obtain the results in Table 8.2 :

Table 8.2. w′ and Err′ measures for different estimators

g(x) gn(x) g̃n(x) ĝb(x)

Service mean 2.9955 2.9690 2.9846 2.9937
rate µ

Charge of the 0.1669 0.1684 0.1675 0.1670
system λ

µ

stability domain ]1, 5.99105[ ]1, 5.9379[ ]1, 5.9692[ ]1, 5.9874[
(1 < β < µ

λ
)

Variation 0.0012 0.2361 0.0289 0.0097
distance w′

Error Err′ 0.0435 0.0713 0.0587

8.7 Perspectives

1. For the same work done in [3], apply the algorithm in [4, 5] to determine W ∗ and the
error on the stationary distributions, with no restriction of conditions.

2. Apply it again with the different estimators of kernel density method.
3. Apply the discrete event simulation and the Student test to determine the proximity of

the characteristics of the two systems using the different estimators.

8.8 conclusion

In this paper, we show the applicability of the strong stability method to evaluate
the proximity of the characteristics of tow systems when at least one of the distributions
governing one of the systems is general and unknown so its density function must be
estimated by the means of the kernel density estimation method.

We show the interest of taking into consideration the correction of the boundary effects
when using the kernel density method for the study of the strong stability of a queueing
system with general unknown distribution, in order to substitute the characteristics of a
complicated real system by those of a simpler classical system.
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