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Abstract

Although quantum key distribution schemes have been proven theoretically secure, they are based on assumptions about the devices that are not yet satisfied with today's technology. In this work, we present the
experimental setup for a measurement device independent quantum key distribution scheme we have proposed as a part of my PhD research. Through simulations, we give the most appropriate parameters needed for the
realisation of the scheme. We also see through simulations how an attack can introduce detectable errors in the distributed secret key.

Introduction

Cryptography is the science of encoding and decoding messages. The
secrecy of the messages depends entirely on a secret key. In classical key
distribution algorithms, the security lies in the assumption of unproven
mathematical diffculties of certain problems such as the integer
factorization and the discrete logarithm problem. However, in 1997, Peter
W. Shor has discovered algorithms able to perform integer factorization
and the discrete logarithm in polynomial time on a quantum machine [1].
Such algorithms would make a large number of private and secret keys,
already used in industry, obsolete. Therefore, private information would be
no longer protected. In contrast to the classical key distribution schemes,
the security of Quantum Key Distribution (QKD) draws on laws of
physics. Indeed, with Heisenberg's uncertainty principle and the quantum
no-cloning theorem, QKD has been proven information theoretically
secure i.e. no assumptions are made about the amount of resources
available to an eavesdropper, Eve, for computing the secret key. In a
previous work, we have proposed a quantum key distribution scheme able
to achieve a relatively high secret key generation rate based on two-way
quantum key distribution, that also inherits the robustness of the
measurement device independent scheme against all detector side-channel
attacks. In this work, we simulate the scheme to get the best parameters for
Qproof—of—principle realization.

Original scheme
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Table 1. Possible outcomes of the BSM.

Experimental setup

Figure 2. Experimental setup of [2].

+ Entangled states of the form [¢) = Js(1HH) +exp® [VV}) are generated
with a poissonian distribution using two BBO crystals and a continuous
wave laser at 405 nm.

* Thestate W) = -5 (|HV} +exp® |VH) is obtained from ¢ by placing a
waveplate (4 /2) in the path of one of the photons.

¢ A Spatial Light Modulator (SLM) made of 640 pixels is additionally
used to act on the phase of the states and transform them to either | %"}
or |¥" ). When taking into account the purity, H, the generated state is
of the form :
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¢ The encoding of classical bits “0” and “1”, namely the phase shift, is
performed with a phase gate. The operation on the travel qubit are
represented by the identity matrix T for the encoding of classical bit “0”
and the phase shift operator @ for encoding “1”.
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where & is an error introduced when performing the encoding operation.

¢ Two detectors aligned at 45° are connected to a coincidence counter
with which, according to the number of detected events, we can
distinguish between the two states.

¢ The performed measurement can be represented by the two following

projectors T = [+){+|and ®" =1 =" where,

=} {-|&

Simulation

The number of photons within each pulse is R = 1000 and the mean
number of detected photons are chosen to be Ny =1
for detecting the state V', and Ny = T7] p-r7]xRx A for detecung
the state [¥ ). r
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Figure 3. Number of counts in each pulse.
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* We can calculate the probability of error as a function of the purity of
the prepared state and the encoding error as shown in Figures 4 and 5.

Figure 4. Probability of error as function of the purity.

Figure 5. Probability of error as a function of encoding error &.

¢ We can also simulate an attack where Eve has to steel photons in
order to recover the secret key. Figure 6 shows the probability of error
introduced by such attack.

Figure 6. Probability of error as a funcuon of the percentage of stolen photons.

¢ The overall Quantum Bit Error Rate (QBER) is :
. Ferrar + Fpc
e R=
0Bt Ferror + Fpe + Fox
where:
- P, is the probability of error introduced by the measurement, and
eventually, an attack.

- Py, is the probability of error introduced by dark counts.

Pro= 1= nH%2 4200 —nPden®ng

Conclusion

The implementation of QKD schemes has been challenged by loopholes
in the devices, which have lowered their security level. We have thus
initiated the work of implementing a deterministic and measurement
device independent QKD scheme [2], we have previously proposed to
remove all detector side-channel attacks. Our work aims at proving that
our scheme allows us to obtain a higher and more practical

final secret key generation rate.
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