
Abstract
This project provides a new support method of global optimization to solve the quadratic minimization problem

with one negative eigenvalue, subject to box constraints. We investigate the support of the objective function and

exploit properties of the indefinite associated matrix for finding global optimality criterion (necessary and sufficient

conditions). Furthermore, using these conditions and computational techniques, we apply the support method that

can effectively solve a quadratic minimization problem with an indefinite associated matrix, having one negative

eigenvalue. Particularly, we study the case where the associated matrix is positive subdefinite, and we use the sug-

gested support algorithm in order to find the optimal solution. We present numerical applications to solve some

box-constrained nonconvex problems with one negative eigenvalue.

Introduction
The resolution of a quadratic problem with linear constraints is very difficult in the nonconvex case,

clearly the nonconvex quadratic problems are NP-Complete. In particular, global quadratic minimiza-

tion problem with one negative eigenvalue is NP-hard [2]. So the global research of the solutions is

a very difficult and very complicated application, and several efforts have been made to find efficient

methods in order to simplify the resolution of this type of problems[1].

Our contribution in this paper is the development of a new method for solving the nonconvex quadratic

problem, where the associated matrix is indefinite and contains precisely one negative eigenvalue. In

particular, the problem with an associated positive subdefinite matrix is often not NP-hard [3].

Model description
We consider the nonconvex quadratic minimization problem with box constraints:

(QP ) minF (x) =
1

2
xtDx + ctx, (1)

s.t �i ≤ xi ≤ ui, i = 1, n, (2)

where Dt = D = (dij, 1 ≤ i, j ≤ n) is a symmetric matrix of order n, supposed indefinite with one

negative eigenvalue (in particular, D is positive subdefinite).

Definition
The real symmetric matrix D is called Merely Positive SubDefinite matrices ( MPSubD : matrices

that are not PSD), if and only if

1. η(D) = 1 ,

2. D ≤ 0 ⇔ D = (dij ≤ 0, 1 ≤ i, j ≤ n) and D �= 0,

where η(D) is the number of the negative eigenvalues of D.

First order local optimality necessary conditions
Let x be a global (local) minimum of (QP). Then the following conditions must be satisfied:

Ei(x) ≥ 0, ∀ i ∈ JL = {i ∈ J : xi = �i},
Ei(x) ≤ 0, ∀ i ∈ JU = {i ∈ J : xi = ui}, (3)

Ei(x) = 0, ∀ i ∈ JF = {i ∈ J : �i < xi < ui},
where E = Dx + c is the gradient of the objective function F at x.

Second order local optimality necessary conditions
Let x be a stationary point of the problem (QP). Then the following condition

DF = D(JF , JF ) � 0 (JF is defined in (3) and verifies E(JF ) = 0) (4)

is necessary for the global (local) optimality of the vector x.

Second order optimality sufficient conditions
Let x be a stationary point verifying the conditions (3) and we consider the set

J0 = {i ∈ J : Ei = 0} . (5)

If D(J0, J0) � 0, then x is a local minimum of the problem (QP).

Global optimality criterion
Given:

F (x)− F (x) = Et(x)Δx +
1

2
ΔxtQΔx +

1

2
Δxt(D −Q)Δx,

where the matrix Q = diag(α1, ..., αn), αi ∈ R, is constructed such that D−Q � 0, with D supposed

MPSubD or indefinite having one negative eigenvalue.

We can generate the matrix Q as follows

a) Q1 = D, where D = diag(d1, ..., dn), di ∈ R , is constructed such that D −D � 0. So we define

di as follows:

di = dii −
n∑

j=1,j �=i
|dij|, ∀i = 1, ..., n.

The matrix (D −D) will be diagonally dominant with nonnegative diagonal elements. Hence we

deduce that D −D � 0.

b) Q2 = λ1In, where λ1 is the negative eigenvalue of the matrix D, and In is an identity matrix of

order n. Consequently, we get D − λ1In � 0.

It is preferable to construct another matrix Q combining the matrices Q1 and Q2 [5]. So, in order to

satisfy the global optimality criterion, we chose an arbitrary real number ρ ∈ [0, 1] and we determine

Q as follows: Q = ρQ1 + (1 − ρ)Q2 = diag(α1, ..., αn), where αi = ρdi + (1 − ρ)λ1, i = 1, ..., n.

Now, we define the matrix Q̂ = diag(α̂1, ..., α̂n), where the numbers α̂i, i = 1, ..., n are defined as

follows:

α̂i = min{0, αi} =

{
αi, if αi < 0,
0, if αi ≥ 0, i ∈ J.

(6)

Sufficient optimality conditions
Theorem:
Let x be a feasible solution (FS) of the problem (QP) and we note by Ê the vector of estimations such

that

Êi(x) =

⎧⎪⎨
⎪⎩

Ei(x) +
1
2α̂i(ui − �i), if xi = �i,

Ei(x) +
1
2α̂i(�i − ui), if xi = ui,

E2
i (x)− 1

2α̂i(ui − �i), if �i < xi < ui, i ∈ J.

(7)

Then the following conditions:⎧⎪⎨
⎪⎩

Êi(x) ≥ 0, if xi = �i,

Êi(x) ≤ 0, if xi = ui,

Êi(x) = 0, if �i < xi < ui, i ∈ J,

(8)

are sufficient for the global optimality of the vector x.

Results

Example
Consider a problem of quadratic minimization with one negative eigenvalue given as follows :

(QP ) MinF (x) = −x21 − x22 − 2x1x2 + x1

s.t − 2 ≤ xi ≤ 2, i = 1, 2

where :

D =

(−2 −2
−2 −2

)
.

Such D is a positive subdefinite matrix having one negative eigenvalue: λ1 = −4, let’s notice that

this problem is concave. This example has two local minima: x1∗ = (−2,−2) and x2∗ = (2, 2); fur-

thermore the vector x1∗ = (−2,−2) verifies the sufficient global optimality conditions, then it is the

global minimum of (QP) with F (x1∗) = −18 as it is shown in picture1 with Matlab:

Figure 1: Example of Quadratic minimization with One Negative Eigenvalue.

Conclusion
We have considered an indefinite quadratic problem with box constraints, where the corresponding

matrix has one negative eigenvalue. In particular, when the matrix D is merely positive subdefinite,

we have proved that the global minimum is an extreme point. We have developed a new support

method for solving the nonconvex problems while investigating the support of the objective function.

We have presented the algorithm which can find a global minimum, while starting by an initial Sup-

port Feasible Solution. So, if the global optimality criterion is verified, then the SFS is optimal, else

we generate an other SFS.
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