$W(\alpha, x, \xi) \Rightarrow \max$

Results

Comparability conditions of $r^{(1)}$ and $r^{(2)}$ relatively to stochastic and convex orders
Theorem 3.
For two transition operators $\mathrm{r}^{(1)}$ and $\mathrm{r}^{(2)}$ of the embedded Markov chains added to each model Σ_{1} and Σ_{2}, we have
If $\lambda^{(1)} \leq \lambda^{(2)}, \mu^{(1)} \geq \mu^{(2)}, \sum_{i=2}^{n+1} \alpha_{\lambda}^{(1)} \leq \sum_{i=2}^{n+1} \alpha_{\lambda}^{(2)}, S_{1}^{(1)} \leq{ }_{s o} S_{1}^{(2)}$ and $S_{\lambda}^{(1)} \leq{ }_{s o} S_{\lambda}^{(2)}$
then $r^{(1)} \leq_{\text {so }} r^{(2)}$ i.e. for any distribution p we have:

$$
r^{(1)} p \leq_{s o} r^{(2)} p, \quad \text { so }=(s t, v)
$$

Proof. We must prove that: $\bar{p}_{n m}^{(1)} \leq \bar{p}_{n m}^{(2)}$ and $\bar{p}_{n m}^{(1)} \leq \bar{p}_{n m}^{(2)}$
comparability conditions of stationary distributions of the number of customers in the orbit for two system M/G/1 retrial queue with two way communication and multiple type of outgoing call, with respect to stochastic and convex orders.

Theorem 4.
Let $\pi_{n}^{(1)}$ and $\pi_{n}^{(2)}$ be the stationary distributions of the number of customers in Σ_{1} and Σ_{2}
If $\lambda^{(1)} \leq \lambda^{(2)}, \mu^{(1)} \geq \mu^{(2)}, \sum_{i=2}^{n+1} \alpha_{\lambda}^{(1)} \leq \sum_{i=2}^{n+1} \alpha_{\lambda}^{(2)}, S_{1}^{(1)} \leq_{s o} S_{1}^{(2)}$ and $S_{\lambda}^{(1)} \leq_{s o} S_{\lambda}^{(2)}$ $\underset{2 \leq \lambda \leq n+1}{\text { and }} \operatorname{Sup} S_{\lambda} \leq_{s t} S_{1 \text { (resp. }}$. Inf $\quad S_{\lambda} \geq_{\nu} S_{1}$ $2 \leq \lambda \leq n+1 \quad \quad \quad 2 \leq \lambda \leq n+1$
then, $\left\{\pi_{n}^{(1)}\right\} \leq_{\text {so }}\left\{\pi_{n}^{(2)}\right\}$, where so $=($ st ou v)

Conclusions

In this work we showed the monotonicity of the transition operator of the embedded Markov chain relative to the strong stochastic ordering and convex ordering, as well as the comparability of two transition operators. Bounds are also obtained for the stationary distribution of the number of customers at departures epochs.

Références

1. Artalejo, J. R. and T. Phung-Duc. Single server retrial queues with two way communication.
Applied Mathematical Modelling 2013; 37: 18111822.
2. Boualem. M, Cherfaoui.M, Djellab. N and Aissani. D. Ingalités stochastiques pour le modèle d'attente M/G/1/1 avec rappels. Afrika Matematika 2017; 28(5-6): 851-868.
3. Sakurai. H and Phung-Duc. T. Two-way communication retrial queues with multiple types of outgoing calls. Sociedad de Estadstica e Investi-gacin Operati
