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Résumé In this article, formulae for the third-order theoretical moments for superdiagonal and subdiagonal of
the Markov-switching bilinear (Xt = c (st)Xt−ket−l + et, k, l ∈ N) , and an expression for the bispectral density
function are obtained.
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13.1 Introduction

If the series is nonlinear the spectral will not adequately characterise the series. For

instance, for some types of non linear time series (e.g. Markov switching bilinear models).

As well, spectral analysis will not necessarily show up any features of non linearity (or non

gaussianity) present in the series. It may be necessary, therefore, to perform higher order

spectral analysis on the series in order to detect departures from linearity and Gaussianity.

The simplest type of bispectral analysis notably by Rosenblatt and Van Ness (1965),

Rosenblatt (1966), Van Ness (1966) and Brillinger and Rosenblatt (1967a, b).

Markov switching time series models (MSM) have received recently a growing interest

because of their ability to adequately describe various observed time series subjected to

changes in regime. An (MSM) is a discrete time random process ((Xt, st), t ∈ Z) such that

(i) : (st, t ∈ Z) is not observable, finite state, discret-time and homogeneous Markov chain

and (ii) : the conditional distribution of Xk relative to its entire past, depends on (st) only

through sk. Flexibility is one of the main advantages of (MSM). The changes in regime can

be smooth or abrupt, and they occur frequently or occasionally depending on the transition

probability of the chain. Markov-switching models were introduced to the econometric

mainstream by Hamilton [7, 8] and continue to gain popularity especially in financial time

series analysis in order to integrated the mentioned characteristics in the conditional mean

through local linearity representation. In this paper we alternatively propose a Markov

switching bilinear (MS −BL) representation, in which the process follows locally from
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a bilinear characterization. This is in order to give a general, flexible and parsimonious

framework for Markov switching modelling and (MS −BL) have been extensively studied

by Bibi, A., Aknouche, A. (2010). In this paper we shall consider a Markov-switching

bilinear model defined by

Xt = c (st)Xt−ket−l + et, t ∈ Z; (13.1)

where (et, t ∈ Z) is a strictly stationary and ergodic sequence of random variables with mean

E (et) = 0 and variance E (e2
t ) = 1, for all t. The functions ai (st) , bj (st) and cij (st) depend

upon a time homogeneous Markov chain (st, t ∈ Z) with finite state space S = {1; . . . ; d},
irreductible, aperiodic and ergodic, initial distribution π(i) = P (s1 = i), i = 1; . . . ; d,

n−step transition probabilities matrix Pn =
(
p

(n)
ij

)
(i,j)∈S×S

where p
(n)
ij = P (st = j |st−n = i)

with P := (pij)(i,j)∈S×S where pij := p
(1)
ij = P (st = j |st−1 = i) for i; j ∈ S. In addition, we

assume that et and {(Xs−1, st), s ≤ t} are independent, we shall note

P (M) =

p11M (1) . . . p1dM (1)
... . . .

...
pd1M (d) . . . pddM (d)

 , Π (M) =

π (1)M (1)
...

π (d)M (d)

 ;

and I(n) is the n×n identity matrix. The model (13.1) is known as a superdiagonal model if

k > l, and subdiagonal model for k < l. Let (Xt, t ∈ Z) be a stationary time series satisfying

the MS − BL model (13.1), and the necessary condition for (Xt, t ∈ Z) to be strictly

stationary (see Bibi, A., Aknouche, A. (2010)). A sufficient condition for stationarity is

γL(A) < 0, where γL(A) is the Lyapunov exponent. The third-order moments of (Xt) are

defined in [6] by :

R (r1, r2) = E {(Xt − µ) (Xt−r1 − µ) (Xt−r2 − µ)} ; (13.2)

= E (Xt Xt−r1Xt−r2)− µ (γ (r1) + γ (r2) + γ (r1 − r2)) + 2µ3;

where µ = E (Xt) , γ (r) = E (Xt Xt−r)

It is sufficient to calculate R (r1, r2) in the sector 0 ≤ r1 ≤ r2 and the other values of

R (r1, r2) are determined from its symmetric relations (see Subba Rao and Gabr, (1984)).

Lii and Rosenblatt (1982) have shown how bispectral density function can be used for

estimating the phase relationships, and this in turn can be applied to the problem of

deconvolution of e.g. seismic traces, quite a number of seismic records are observed to

be non gaussian, and in many geophysical problems it is often required to estimate the

coefficients. Also, the bispectral density function could, in principle be used for testing

linearity.
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The bispectrum has been used in a number of investigations as a data analytic tool ; we

mention in particular the work of Hasselman, Munk and MacDonald (1963) on ocean waves,

the papers of Lii, Rosenblatt (1979) on the energy transfer in grid generated turbulence.

In this paper, we shall use the third-order moments to derive the bispectral density function

of Markov switching MS −BL models.

13.2 Spectral and bispectra

We now consider the evaluation of the spectral and bispectral of the process (Xt) when

the process satisfies some linear time series models. We consider the linear model :

Xt =

q∑
j=0

bj (st) et−j; (13.3)

we have E (Xt) = 0, for all t,

γ (r) = E (Xt Xt−r) =


q∑
j=r

1′(d)P
(
bj
)
π
(
bj−r

)
if 0 ≤ r ≤ q;

0 if r > q.

The spectral density function f (ω) of the process (Xt) defined by

f (ω) = 1
2π

+∞∑
r=−∞

γ (r) exp (−irω) , −π ≤ ω ≤ π, the spectral density function of the

process (Xt) is given by f (ω) = γ (0) + 2
q∑
r=1

γ (r) cos (ωr), the bispectral density function

f (ω1, ω2) is given by f (ω1, ω2) = 0, all ω1, ω2 ∈ [−π, π]. We consider the linear model :

Xt =

p∑
i=1

ai (st)Xt−i +

q∑
j=1

bj (st) et−j + et. (13.4)

Franq and Zaköıan (2001) propose the following representation of (13.4) :

X t = A (st)X t−1 + et,

where X t = (Xt, Xt−1, ..., Xt−p+1, et, et−1, ..., et−q+1)′ ∈ Rp+q, et = (et, 0, ..., 0)′ ∈ Rp+q and

A (st) =



a1 (st) ... ap (st) b1 (st) ... bq (st)
1 0 ... ... ... 0
0 1 0 ... ... 0
...

. . . . . . . . . . . .
...

0 ... ... 0 1 0
0 ... ... ... ... 0
0 1 0 ... ... 0
...

. . . . . . . . . . . .
...

0 ... ... 0 1 0
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γ (r) = E
(
X t X

′
t−r
)

is the autocovariance of X t. Then,

π (i)E
(
X t X

′
t−r
∣∣ st = i

)
=

d∑
j=1

A (i)E
(
X t−1 X

′
t−r
∣∣ st−1 = j

)
pjiπ (j) ;

for all r > 0, we note :

W (r) =
(
π (1)E

(
X t X

′
t−r
∣∣ st = 1

)
, ..., π (d)E

(
X t X

′
t−r
∣∣ st = d

))′
(see Pataracchia. B (2011)) from which we have :

W (r) = P (A)W (r − 1) = Pr (A)W (0) ,∀r > 0,

where A = (A (1) , ..., A (d))′ . Finally, we can compute the autocovariance of the process

Xt : γ (r) =
(
H ′ ⊗ 1′(d)

)
W (r)H. For r < 0, let us define :

W̃ (r) =
(
π (1)E

(
X t X

′
t−r
∣∣ st−r = 1

)
, ..., π (d)E

(
X t X

′
t−r
∣∣ st−r = d

))′
.

Then for r < 0, W̃
(i)

(r) = π (i)E
(
X t X

′
t−r
∣∣ st−r = i

)
=
(
W (i) (−r)

)′
from which we have

W̃ (r) = W (−r) = P−r (A)W (0) ,∀r < 0. Finally, for negative r, we can compute the au-

tocovariance of the process Xt : γ (r) =
(
H ′ ⊗ 1′(d)

)
W̃ (r)H, from which it can be verified

that γ (r) = γ (−r) ,∀r < 0.

Spectral representation which defines the spectral as Fourier transform of the autoco-

variance function

f (ω) =
1

2π

+∞∑
r=−∞

γ (r) exp (−irω) , − π ≤ ω ≤ π;

=
1

2π

(
H ′ ⊗ 1′(d)

) +∞∑
r=−∞

P|r| (A) exp (−irω)W (0)H;

=
1

2π

(
H ′ ⊗ 1′(d)

) (
P (A)− P−1 (A)

) (
2 cosω I(d) −

(
P (A) + P−1 (A)

))
W (0)H;

on conditional ρ (P (A)) < 1 (see Costa and all (2005)), the bispectral density function

f (ω1, ω2) is given by f (ω1, ω2) = 0, all ω1, ω2 ∈ [−π, π]. We consider the bilinear model :

Xt =

p∑
i=1

ai (st)Xt−i +

q∑
j=1

bj (st) et−j +

P,Q∑
i,j=1

cij (st)Xt−iet−j + et. (13.5)

Bibi, A., Aknouche, A. (2010), propose the following representation of (13.5)

X t = B (st)X t−1 + et, same result is obtained :
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f (ω) =
1

2π

(
H ′ ⊗ 1′(d)

) (
P (B)− P−1 (B)

) (
2 cosω I(d) −

(
P (B) + P−1 (B)

))
W (0)H;

where B = (B (1) , ..., B (d))′ . We note that sepectral representation does not allow us

to distinguish linear models from nonlinear models and therefore should be talking about

higher order spectral (bispectral).

13.3 Superdiagonal models

The superdiagonal model may be written as

Xt = c (st)Xt−ket−k+m + et, k ≥ 2, 1 ≤ m ≤ k − 1; (13.6)

we have µ = E (Xt) = 0, for all t,

γ (r) = E (Xt Xt−r) =

{
1′(d)

(
I(d) − Pk (c2)

)−1
π, if r = 0;

0, if r 6= 0.

Lemma 13.1 For the superdiagonal model (13.6) all the third-order moments R (r1, r2)

are equal to zero except at r1 = k −m, r2 = k, viz., R(k −m, k) = 1′(d)Pk (c) π (V ) , where

π (V ) = (π (1)E (X2
t |st = 1) , ..., π (d)E (X2

t |st = d))
′
.

Proof : Consider the case r1 = r2 = 0. Using (13.6) it can be shown that :

E
(
X3
t |st = i

)
= c3 (i)E

(
X3
t−ke

3
t−k+m |st = i

)
+ 3c (i)E (Xt−ket−k+m |st = i) = 0.

Using (13.2) we obtain, R(0, 0) = 0. For r1 = r2 = r, say, where r > 0, we expand Xt using

(13.3) to give

E
(
XtX

2
t−r |st = i

)
= c (i)E

(
Xt−kX

2
t−ret−k+m |st = i

)
= 0

Using (13.2) we obtain, R(r, r) = 0. Now consider the case r1 = 0 and r2 = r. Squaring

both sides of (13.3), multiplying by Xt−r and taking expectations, we get :

E
(
X2
tXt−r |st = i

)
= c2 (i)E

(
X2
t−kXt−re

2
t−k+m |st = i

)
= 0;

we obtain, R(0, r) = 0. Lastly, consider the case r1 = r and r2 = r + s. When r ≥ 1 and

s ≥ 1, it can be shown that

E (XtXt−rXt−r−s |st = i) = c (i)E (Xt−kXt−rXt−r−set−k+m |st = i) ;

E (XtXt−rXt−r−s |st = i) =

{
c (i)E

(
X2
t−k |st = i

)
, if r1 = k −m, r2 = k;

0, otherwise.

Using (13.2) we obtain, R(k −m, k) = 1′(d)Pk (c) π (V ) .



112 A. GHEZAL

13.4 Subdiagonal models

The subdiagonal model may be written as :

Xt = c (st)Xt−1et−2 + et; (13.7)

in which Xt−1 and et−2 are dependent, and therefore the derivation of the moments is more

complicated and rather long. For this reason, we will present the final results. We have

µ = E (Xt) = 0, for all t,

var (Xt) = E
(
X2
t

)
= 1′(d)

{
π +

(
I(d) − P

(
c2
))−1 (

I(d) + 2P
(
c2
))
π
(
c2
)}

,

and :

γ (r) = E (Xt Xt−r) =

{
1′(d)P (c) π (c) , if r = 3;

0, otherwise.

Moreover, the third-order moments are given by

R (r1, r2) = E (Xt Xt−r1Xt−r2)

=


1′(d)

{
π (c) + 3

(
I(d) + 3

(
I(d) − P (c2)

)−1 P (c2)
)
P (c) π (c2)

}
, if r1 = 1, r2 = 2

21′(d)P2 (c)π (c) , if r1 = 2, r2 = 4

0, otherwise.

13.5 Bispectral structure

The bispectral density function is defined as :

f (ω1, ω2) =
1

4π2

+∞∑
r1=−∞

+∞∑
r2=−∞

R (r1, r2) exp (−ir1ω1 − ir2ω2) ;

where R (r1, r2) is the third-order central moment defined by (13.2). Using the well known

symmetric relations for both R (r1, r2) and f (ω1, ω2) (see, e.g., Subba Rao and Gabr, 1984)

the bispectral density function f (ω1, ω2) of the MS−BL model (13.1) is given as follows.

For the superdiagonal model (13.6) :

f (ω1, ω2) =
R(k −m, k)

4π2

{
H(k −m, k) +H(k, k −m) +H(−m,−k)

+H(−k,−m) +H(m,−k +m) +H(−k +m,m)

}
; (13.8)

where H (r1, r2) = exp (−ir1ω1 − ir2ω2). For the subdiagonal model (13.7), f (ω1, ω2) given

by :

f (ω1, ω2) =
1

4π2


R (1; 2)

{
H (1; 2) +H (2; 1) +H (1;−1) +

H (−1; 1) +H(−1,−2) +H(−2,−1)

}
R (2; 4)

{
H (2; 4) +H (4; 2) +H (2;−2) +

H (−2; 2) +H(−4,−2) +H(−2,−4)

}
 . (13.9)
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13.6 Conclusion

For the superdiagonal and subdiagonal bilinear models we have obtained all the theo-

retical third-order central moments and also explicit expressions for the bispectral density

function. In practice, given real data {X1, X2, , ..., XN}, both third-order moments and

bispectral density function could be estimated (see, e.g., Subba Rao and Gabr, 1984).
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