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Résumé In this paper we consider queues with breakdowns. We will develop a functional approximation of
the stationary characteristics of this queue where the parameter of interest is the breakdown probability. More
specifically, we will apply the strong stability method and the series expansion method. We provide an analysis of
the M/G/1 queue with breakdowns for both finite and infinite waiting capacity.
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Server breakdowns are a common phenomenon in queueing networks. Unfortunately,

the analysis of queueing systems becomes much more challenging through the occurrence

of breakdowns. We assume that a server breaks down at the beginning of a service in-

dependently of everything else with probability θ, for θ ∈ [0, 1]. If a server breaks down

it is repaired where we assume that repair times follow an exponential distribution. For

our mathematical analysis we will elaborate on the Markov kernel of the queue length

process embedded at appropriate events. For example, for the M/G/1 queue we will em-

bed the Markov chain at service completions and repair completions. Let Pθ denote the

Markov kernel of the (embedded) queue length process, then P0 represents the system

with no breakdowns whereas P1 models the system with certain server breakdown. Due

to our assumption that breakdowns occur independently of everything else, it holds that

Pθ = θP1 +(1−θ)P0, for θ ∈ [0, 1]. For our analysis we consider the case that upon a server

breakdown the customer is not lost but send back to the front of the queue. Note that this

implies that P1 will become a pure birth process as no customer will ever be served and the

P1 system is not stable, i.e., the mean queue length in the P1 process will be unbounded.

As we will discuss, a lower bound θ∗ can be obtained such that for θ ≤ θ∗ the mixed system

Pθ is stable. Best to our knowledge this is a new approach to stability analysis.

Let πθ denote the unique stationary distribution of Pθ, provided that it exists. Computing

πθ is a challenging problem and a variety of approaches have been proposed in the litera-
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ture for approximately or indirectly solving the stationary distribution. The predominant

approach is to obtain either the generating function of πθ or an analytical expression for πθ

containing a Laplace-Stieltjes transform, see, for example, [1, 4]. Also numerical solutions

by means of the matrix geometric method [17] are available, see [15, 18].

In performance analysis one is not only interested in evaluating the system for a certain

set of parameters but also in the sensitivity of the performance with respect to the pa-

rameters. In a model with breakdowns, the breakdown probability is a parameter of key

interest and we will analyze the dependence of πθ on θ, which is a significantly more chal-

lenging then evaluating πθ for fixed θ. An obvious approach would be to choose a sequence

of reference points {θn}, with, say, a ≤ θn ≤ b, and use {πθn} as approximation of πθ

for a ≤ θ ≤ b. Unfortunately, numerical evaluation of πθ at a sequence of points θn is

computationally demanding. Moreover, if πθn is obtained in only approximative form (by,

say, evoking some numerical procedure), no information is available on the quality of the

overall approximation of πθ on a ≤ θ ≤ b by {πθn}. Rather than computing πθ at various

points independently, we will approximately compute πθ through π0, i.e., we will answer

the question of what the effect of an increase of the breakdown probability by θ has on the

system with no breakdowns. This kind of perturbation analysis is a classical research area

in Markov chain theory, see, for example, [3, 7, 8, 11, 12, 14, 16, 19, 20, 21]. While these

kind of bounds apply to queues with denumerable state space, the perturbation bounds

provided in the literature for πθ − π0 behave numerically rather poorly (we will illustrate

this also by numerical examples).

For finite queues, the recently [9, 10] introduced series expansion algorithm (SEA) proved

to be numerically efficient, however, it lacks applicability to denumerable queues. In addi-

tion, convergence of SEA hinges on checking algorithmically a contraction condition.

For our analysis we combine results from perturbation analysis of Markov chains with SEA.

In particular, we will elaborate on the strong stability approach (SSA), [2, 5, 6, 13]. We

discuss perturbation analysis of the M/M/c queue and the M/G/1 queue with breakdowns.

The main findings we report are that, while the strong stability method has the advantage

of providing bounds for infinite queues, unfortunately, the numerical quality of the bounds

is rather poor. The series expansions proves to be numerically efficient but requires that a

finite queue is studied. From this we conclude that the strong stability method is an ana-

lytical method that leads to qualitative bounds that can behave in practice rather poorly,

whereas the series expansion method is a numerical approach that provides an efficient al-

gorithm for the functional approximation of finite queues. There is, however, an interesting

link between the two approaches. The techniques developed for the strong stability method

lend themselves to establish lower bounds of convergence for series expansions and can be
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made fruitful for stability analysis. An interesting observation is that the strong stability

methods can be efficiently applied to birth-and-death like queueing networks.
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