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 A succession of novel heteroepitaxial grown hybrid films MoS2 and 

ZnO thin film composites have been effectually synthesized on Cu2O 

by a two-step thermal oxidation method for efficient 

photoelectrochemical processes and analyzed by X-ray diffraction 

(XRD), Ftir investigations, and they were characterized by 

photoelectrochemical analysis and confirmed their Successful 

synthesis. In this unparalleled strategy, two semiconductors are 

sandwiched between three-dimensional Cu2O substrates to provide 

numerous active sites for photocatalytic oxidation improve noticeable 

light absorption and restrain photogenic charge reunification. 

Therefore, the resulting fabricated hybrid (ZnO/Cu2O/MoS2) acts as a 

direct working electrode and is highly reactive in water by the PEC 

process, which can facilitate the estrangement of photogenerated 

electron-hole twosomes below low realistic voltage. Therefore, the 

photocurrent response of the fabricated ZnO/Cu2O/MoS2 working 

electrode was appreciably enhanced due to the synergistic effect of 

every element of the 3D structure. Consequently, the produced 

photoelectrochemical cell showed high sensitivity with wattage 

conversion efficiency (PCE) of 0.30%, an open circuit voltage (Voc) 

of 38 mV, and a short circuit current density (ISC) of 0.66 mA.  
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I. Introduction 

Semiconductor-build photocatalyst Zinc oxide (ZnO) as an auspicious has been broadly examined for 

removing carbon-based contaminants in water due to its radiosensitivity, soaring thermal steadiness, 

economical or low-priced, and environmental sociability [1]. Nevertheless, under visible light irradiation the 

extensive bandgap of ZnO limits its photocatalytic activity and its high electron-hole reunification rate was due 

to the high exciton binding energy [2]. Coalesce ZnO with bimetallic or monometallic noble metals for 

instance ag, au, pt, auag and aupd infinitesimal particles has been proposed the localized surface plasmon 

resonance effect to extend the optical absorption bandwidth of ZnO, this is one of the recommended 

resolutions used for extending the optical incorporation bandwidth. At the interfaces between ZnO and 

magnanimous metals that yield the formation schottky junctions can also efficiently augment the photocatalytic 

bustle and detached the photogenerated charges of pure zinc oxide [3–9]. On the other hand, the practical 

application of this material extrammel by these high-priced precious metals [10]. Therefore, another procedure 

or method is to merge relatively narrow bandgap semiconductors with ZnO. This also effectively separating 
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electrons and holes, at the same time widen the optical absorption bandwidth, [11]. In recent years, transition 

metal dichalcogenides (tmds) have attracted much attention as new materials for photocatalysis for instance 

WS2, MoS2, MoSe2 and WSe2 [12,13]. Molybdenum disulphide (MoS2) is one of the most intensively studied 

tmds due to its highly photochemical properties, electrical and tunable optical. The molybdenum disulphide 

(MoS2) has a graphene-alike physical composition of prearranged coatings clutched together by van der waals 

forces. These tmds are in the hexangular family, although be different in the number of coatings [13], the main 

MoS2 epitomes are single-coating1t (trigonal) and 1h (hexagonal) diamond dust systems, two-layer hexangular 

2h and three-coating rhombohedral 3r. Amongst them, the 1t phase is octahedrally synchronized and 

metastable [10,13]. MoS2 when its dimension is abridged to a two-dimensional structure has a diminutive 

tortuous bandgap (1.3 ev) in bulk and a larger direct bandgap (1.9 ev). Accordingly, low-multidimensional 

MoS2 is well-thought-out as a hopeful visible-light photocatalyst that can bind with ZnO [11,14–20]. In the 

decomposition of rhodamine b and methylene blue MoS2 was studied as a cocatalyst for ZnO and the outcomes 

displayed that the photocatalytic effectiveness of ZnO/MoS2 was improved due to broadened light absorption 

window, enhanced charge separation and increased active sites [11,14–20]. Computational studies show that 

the configuration of the ZnO/MoS2 heterostructure narrows the bandgap, promotes the separation of 

photogenerated excitons, at the boundary creates a large built-in electric field and broadens the incorporation 

range [21,22]. 

Amongst an assortment p-type semiconductors, copper oxide (Cu2O) with an unwavering bandgap of 2.0 ev 

has emerged as a hopeful photocathode material [23-26], which can be used for solar energy conversion, 

spontaneous generation, water splitting, and efficient photocathode materials, sensing [27-31], as a result of its 

advantages such as low toxicity and light absorption. On the other hand, attributable to its soaring charge 

reunification rate the production of copper ii oxide (CuO) was still limited. Cu2O with an arrayed three-

dimensional (3d) structure can, provide more reactive sites, increase the specific surface area, resulting in a 

significantly minimized carrier diffusion length, and offer advantages for direct electron transfer further 

improving the pec properties and response [32-34]. 

In contrast, constructing heterojunction structures in other semiconducting materials has also been an effective 

approach [35-38]. Here, an n-type ZnO semiconducting material with a conduction band that maintains band 

meandering in cu2o was preferred. The formed band edge levels can enhanced well-organized separation of 

photoinduced electron-hole pairs, light absorption, and optoelectronic translation efficiency [27,39,40]. 

Copper i oxide (Cu2O) is a hopeful semiconducting material as an optical material attributable to its suitable 

optical band configuration that response to the visible light spectral range. Cu2O has valence and conduction 

bands and can oxidize and reduce water to hydrogen and oxygen. Cu2O, a p-type semiconducting material with 

a bandgap of 2.1 ev and conductivity, is widely used in many implementations attributable to its soaring-

performance conversion of solar energy, high absorption coefficient and excellent photocatalytic properties to 

visible light [41-44]. Both zinc oxide (ZnO) and copper i oxide (Cu2O) are natural materials low-cost, non-

toxic. Zno and cu2o can be formed using different methods [45-49]. The main approach in relation to this work 

is to connect a composite coat with metallic material ZnO accompanying a narrow bandgap semiconductor 

containing MoS2. In this work, for the target of enhancing the photocatalytic capability of coated hybrid zno 

thin film composites, predominantly for exploiting the visible region of the solar spectrum we account an 

analysis on the synergistic function of MoS2. We have constructively fabricated a succession of new thin-film 

heteroepitaxial composites, including ZnO/MoS2 composites. The photoelectrochemical performance was 

evaluated by examining the PEC solar cells under sunlight irradiation. The fundamental features of these films 

were compared and investigated. The pec performance of cu2o doped and MoS2/ZnO electrodes were 

investigated and highest in rank operating electrode was determined.  

II. Research Method  

II.1 Synthesis of Cu2O thin film 

 

A small piece of Cu with a defined area (2 cm × 2 cm) was then thermally oxidized in a furnace. A commercially 

available pure copper (99.98%) sheet (0.1 mm thick) substrate was cut into small pieces (2 cm×2 cm). These 

copper foil pieces were washed with deionized (DI) water and dilute nitric acid for about 2 min, respectively, 

and subsequently dried in-between tissue paper for the removal of impurities on the film surface. The oxidation 

temperature was controlled over a wide range from room temperature (RT) to 450 °C. The heating pace was 

about 10 °C./min, and once the preferred maximum temperature was reached, it was held for 30 minutes to allow 
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copper oxide to form. After oxide formation, the furnace was allowed to cool for 2 hours. Slow cooling was 

maintained to minimize potential thermal stress and film cracking. 

 

II.2 Synthesis of 𝑴𝒐𝑺𝟐/𝒁𝒏𝑶/𝑪𝒖𝟐𝑶 hybrid film 

 

The arrangement used to evolve MoS2 was chemical vapor deposition (CVD) [50, 51]. The Cu2O substratum 

was subjected to a precise temperature and pressure conditions to chemically react with one or more precursors 

on the surface of the substratum to dummy up finest, big-region thin films. The appliance of chemical vapor 

deposition in sole-coating transition metal dichalcogenides (TMD) fabrication begins with the growth of MoS2. 

The warming rate was set ahead at 10 °C for every minute and with an accession temperature of 650 °C and held 

at a temperature for thirty minute (30) minutes, the closure was open when the temperature drops to 400 °C. A 

MoS2 configuration was acquired when the temperature was lowered to room temperature. The investigational 

procedure is revealed in Figure 1.0.  CVD can efficiently produce single-layer and multilayer MoS2/ZnO. We 

were able to grow high-superiority single-crystal stuffs and produce thin films consistently distributed over a 

outsized area. This was helpful in later fabrication of optoelectronic components.  

 
Figure 1. Representation of a growing 𝑴𝒐𝑺𝟐/𝒁𝒏𝑶/𝑪𝒖𝟐𝑶 film. 

 

II.3. PEC Measurement 

 

In a crystal clear container the PEC pianism of the tailored operational electrode was cast about. For this 

purpose, two different electrode 𝑀𝑜𝑆2/𝑍𝑛𝑂/𝐶𝑢2𝑂 and Cu electrode were assembled and immersed in a crystal 

clear plastic container. To prepare the intermediate electrolyte, the 1g of NaCl powders were mixed with 25ml of 

distilled water, stirrer quietly in anticipation of the electrolyte to dissolve completely. The PEC performance of 

the hybrid electrodes was measured or evaluated using Current-Voltage measurements. The 

Photoelectrochemical studies were performed by means of a two-electrode electrochemical system. (Figure 2) 

show the graphic exemplification of photo bring forth charge carriers (e- & h+) after solar irradiation on the 

synthesized sample 𝑀𝑜𝑆2/𝑍𝑛𝑂/𝐶𝑢2𝑂. An operational electrode (𝑀𝑜𝑆2/𝑍𝑛𝑂/𝐶𝑢2𝑂 ) and a copper (Cu) plate 

were employed as the counter electrodes, correspondingly. The multimeter was engaged to accomplished 

electrical path of the photocurrent density and photo voltage of electrodes under illumination (AM 1.5 G) within 

the potential window using 1g of NaCl electrolyte as a mediator between the two electrodes. The approach 

explained or expressed in this paper provides a simple and novel method to synthesize thin film materials, geared 

up for applicative applications for instance the photoelectrochemical solar cell and hydrogen production. 
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Figure 2: Schematic illustration of photo generated charge carriers (e- & h+) after solar irradiation on 

 

II.4. XRD characterization of 𝑴𝒐𝑺𝟐/𝒁𝒏𝑶/𝑪𝒖𝟐𝑶 

 

XRD pattern were made to examined or investigate the crystal phase and synthetic arrangement of the three 

dimensional (3D) Cu2O on the copper (Cu) substrate. As guide physically in Fig. 3, dissemination peaks 

accompanying the horizontal in the (111), (200), and (220) bearings (noticeable with blueish trigon) at 43.8° and 

51.2° maybe arranged to face- concentrated three dimensional copper substratum (JCPDS card No. 04-0836). 

Except for the optical phenomenon extremum above of the pure copper substrate, all supplementary diffraction 

extremum with the bearing in the (110), (111), (111), (200) and (220) corresponding to 29.7°, 36.6°, 37.0°, 42.2° 

and 61.7° maybe allotted to the three dimensional phase Cu2O (JCPDS card No. 65-3288) [52,53,54,55], 

indicating the complete formation of Cu2O with other impurities, such as CuO (111) at 38.9°[55]. Furthermore, 

to confirm or validate the sandwiched product of MoS2/ZnO the XRD pattern was observed at 33.4°, 46.1°, 61.7° 

corresponding to (101), (104) and (008) correspondingly. 

 

 
Figure 3. XRD pattern of MoS2/ZnO/Cu2O 

 

II.5  FT-IR spectra analysis 

 

As guide physically in Fig. 4 displayed the FTIR spectrum of doped Cu, Cu2O stratum and MoS2 thin coating 

and Fig. 5 represents the FTIR spectrum of MOS2/ZnO/Cu2O thin coatings. The FTIR extremum present in the 

spectrum fit into to Cu, ZnO, MoS2 or Cu2O forms. Numerous additional phases were detected or noticeable in 

the FTIR absorption spectrum. The FTIR absorption spectrum of 𝑀𝑜𝑆2/𝑍𝑛𝑂/𝐶𝑢2𝑂 thermally oxidized meant for 

2h showed that ZnO, MoS2 and Cu2O phase was present in the details of the coating. In the range, a meaningful 

broad band in the range of 400-600, 700 cm-1 was ascribed to the dimension stretching trembling of the Zn-O 

chemical bond. The FTIR range of the film included three spectrum at 650, 620 and 2359 cm-1 tantamount to 

modes of zinc oxide [56,57]. In the FTIR spectra of the MoS2 films doped with Cu2O thermally oxidized for 2h, 

only the peaks in relating to ZnO, MoS2 and Cu2O were observed. The Cu2O phase seemed at 615cm-1 doped 

with oxygen which was thermally oxidized for 2h. The peak at 2325cm-1 stands for the P-H modes. The peak at 

3506cm-1 symbolize to the oxygen related compound modes of copper I oxide. This imperceptible peak 876-

825cm-1 was certified to the archetypal distension trembling of the Cu(II)-O bond of copper I oxide setting 

[58,59]. As the oxidation point in time increased for conversion of Cu to Cu2O, the intensity of copper I oxide 

increased. It was make known that the Cu2O, MoS2 segment set off forward when doped with ZnO at 
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altitudinous temperature. The peak at 3450cm-1 corresponded to the O-H modes, peak at 735cm-1 corresponded 

Benzene Ring, CH2/CH3 observed at 2900cm-1[60, 61]. 998cm-1 are broad absorption bands attributed to MoS2 

[62, 63]. 

 

 

 
Fig. 4: Ftir Result of Cu, Cu2O and MoS2 

 
Fig. 5: MOS2/ZnO/Cu2O Ftir Result 

 

II.6   I-V Curve analysis 

 

The solar cells external parameters of the samples such as the efficiency, maximum power, photo voltage and 

photocurrent was obtained beneath illumination as delineated in Table 1.0 while the Cu- 𝑍𝑛𝑂/𝑀𝑜𝑆2/𝐶𝑢2𝑂 PEC 

solar cells were compared with characteristic curves for a set of exterior parametric quantity, pursued by 

modification power efficiency deduce from figure 6. When analyzing the prototype, the calculated external 

parameters of the organized samples Cu-Cu2O and that of 𝑍𝑛𝑂/𝑀𝑜𝑆2/𝐶𝑢2𝑂 be stated as shown in table 1.0. To 

examined or investigate the solar cell parameters, two various readings are written utilizing a multimeter and 

abundant cosmic irradiances so that study the solar cell parametric quantity, two disparate graphs are 

premeditated for two different samples for examining the photo reaction and photo voltage of the working and 

counter electrode under illuminance. In table 1.0 it maybe visualized that for the analyzed 𝑍𝑛𝑂/𝑀𝑜𝑆2/𝐶𝑢2𝑂 , 
the deposited of 2D materials and ZnO semiconductor material enhances the photo reaction simultaneously ever-

increasing the efficiency of the model. It in addition acts at the same time as an absorption coating to engender 

charge carriers (electrons and holes) beneath solar radiation. 
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Table 1.0: The highest power, photocurrent, effectiveness and photo voltage of different reading of Cu-Cu2O and 

Cu- 𝑍𝑛𝑂/𝑀𝑜𝑆2/𝐶𝑢2𝑂 photoelectrochemical solar cell 

𝑺 𝑵⁄  Sample 𝑰𝒔𝒄(𝒎𝑨) 𝑽𝒐𝒄(𝒎𝑽) 𝜼(%)  

1 𝐶𝑢2𝑂 0.13 10.0 0.035  
2 𝑀𝑜𝑆2/𝑍𝑛𝑂 0.66 38 0.30  

 

 

Fig 6: The graph of Cu-𝑍𝑛𝑂/𝑀𝑜𝑆2/𝐶𝑢2𝑂 photoelectrochemical solar cell after surface modification 

III. Conclusion 

In summary, by combining layered ZnO and MoS2, we have fruitfully synthesized a succession of novel 

heteroepitaxial compounds that display much higher photocatalytic activity than pure Cu2O in 

photoelectrochemical solar cells under noticeable light irradiance. Both synergistic effects are correlated to the 

surface properties and visible light collection efficiency caused by the bonding of two different bandgap 

semiconducting materials. The arranged heteroepitaxial material showed increased activity towards increasing 

the power conversion efficiency of the engineered sample, about 9 times higher than pure Cu2O. The means of 

transfer of the photo-generated electrons from ZnO to the MoS2 facilitates an interfacial electron transfer and 

suppression of the recombination of charge carriers. Full structure and PEC analysis indicate that the enhanced 

PEC action possibly will be certified to the synergistic effect between the two 2D materials and semiconductor 

material. Moreover, the 𝑍𝑛𝑂/𝑀𝑜𝑆2/𝐶𝑢2𝑂 composites also showed good stability during the application of 

photoelectrochemical process. As a result, the use of Cu2O as main substrate for ZnO/MoS2 deposition as a new 

type of optoelectronic composite stuff put up a valuable candidate for photoelectrochemical solar cell and 

hydrogen production. 
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