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On Portfolic Selection when Asset Returns are Eliptical,
Mohamed TOUATI-TLIBA'
Abstract

For many markets, returns have fatter than normai tails with an extremely high
sample kurtosis. Hence the class of elliptical distributions provides attractive and
appealing alternatives to normal distributions  in modeling the empirical
distribution of returns. We derive a result related to the covariance of functions of
elliptical random variables. Rased on this resull, we obtain the conditions of
optimality for the portfolio choice problem and show how to derive many useful
results for the elliptical class of distributions including some main results in the
studies of Chamberlain and of Owen and Rabinovitch. In particular, we obtain the
efficient set, in the portfolio space, anatytically. Furthermore, we derive a general
global risk aversion measure, relevant to the case of elliptical risk, which
generalizes the Rubinstein measure. We discuss, in the context of the portfolio
choice problem, differences between normal and non normal elliptical
distributions, especially those with heavier tails than normal, focusing on the role
of Kurtosis as a measure of fatness of tails in determining the optimal investment
sirategy of risk-averse investors. If a riskless asset exists, the sensitivity of
expected utility to kurtosis implies that a risk-averse investor demand for risk is
smaller when faced with a fai tails elliptical distribution instead of a normal
distribution that presents the same mean-variance choices. When the kurtosis
measure gets sufficiently large, a risk-averse investor tends to invest all his wealth
in the riskless asset even when the variance remains constant.
Finally, we show that short sales are not an optimal investment sirategy for all risk-
averse investors if and only if the means of asset returns are equal and the inverse
of the variance-covariance matrix has non niegative (positive) row sums.

Key words: Portfolio Selection: Elliptical Distribution; Scale Mixture of Normals;
Kurtosis; Global Measure of Risk-Aversion; Stochastic Dominance.

Introduction

The theory of portfolio choice is central to most modern research in finance. It
was clear since the early works of Knight (1921) and Hicks (1939) that the relevant
parameters in a portfolio choice problem are return and risk. Until Morkowitz
(1952) and Tobin (1958), those theoretical models, which did exist, failed to
provide a useful measure of risk and to explain the diversification phenomenon.
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Morkowitz’s theory begins with the simple assumption that investors consider only
the mean and the variance of total returns on investments. Investors, according to -
the mean variance theory, dislike variance and seek to reduce it by diversifying
given their subjective return to risk tradeoff.

Sharpe (1964), Lintner (1965) and Mossin (1966) buiit on Morkowitz’s normative
theory to develop a positive theory of market equilibrium. Their Capital Asset
Pricing Model (CAPM) provides an equilibrium price of risk and implies that
investors are compensated by a higher mean only for bearing systematic risk; all
nonsystematic risk is diversified away. The extent of diversification in a particular
portfolio is measured by the correlation coefficient with the market portfolio,
which is the most diversified by definition.

If investors were Von Neuman-Morgenstern expected utility maximizers, then
the mean-variance analysis could be justified by either assuming that utility
functions were quadratic or that asset returns were normally distributed. Samuelson
(1970) has shown that the mean-variance analysis is a good approximation for
“compact” distributions and Merton (1971) has demonstrated its validity in
intertemporai portfolio problems when trading takes place continuously.

Arrow (1971) objected to the use of quadratic utilities even in their monotone
range. He observed that the quadratic function exhibits increasing absolute risk
aversion, which implies that risky assets are inferior assets in a portfolio problem.

The objection to the normality of returns assumption was mainly on empirical
grounds. It was noticed that the empirical distribution of asset returns has fatter
tails than the normal in the sense that many observations are extreme and come
from the tails of the distribution, which rejects normality. Mondelbrot (1963) and
Fama (1965a) showed that stock return distributions are more peaked at the center
with thicker tails than the normal. To capture the fat tail feature, they fitted the
infinite variance stable Paretian class of distributions. Blattberg and Gonedes
(1974) study indicates greater descriptive validity for the student t distribution over
the stable Paretian as a model for stock market returns.

More recent studies confirmed the fat tail phenomenon. Longin (1995) used tests
based on extreme values theory to study the behavior of daily returns in the French
stock market over the period 1977-1990 and found deviation from normality with
high kurtosis and relatively small negative skewness. His empirical results lead to
the rejection of the normal and the discrete mixture of normal distributions which
contain fewer extreme values than observed and the rejection of the stable Pareto-
LLevy which contains more extreme values. His results suggest the use of the
student distribution. Duffie and Pan (1997) states that, for many markets, returns
have fatter than normal tails. In particular, the S&P500 daily returns from 1986 to
1996 have an extremely high sample kurtosis and negative skewness.

The Indian stock market was studied by Broca (2002) for the period 1985-
1998.The empirical series displays non normality with severe kurtosis and slight
positive skewness. The results show that the student t model unquestionably
provides a superior fit relative to the normal.




Fama and French (1995) found that non market factors such as size and the book to
market ratio were priced by investors. Chung, Johnson and Schill (2001) examined
returns for daily, weekly, monthly, quarterly and semi-annual intervals. They found
that normality is rejected and reported higher than normal kurtosis for all five
cases. Théy showed that adding systematic co-moments of order higher than two
reduces the explanatory power of the Fama-French non market factors to
msignificance in almost every case.

A general alternative to the mean-variance framework was developed by Hadar and
Russel (1969) and Hanoch and Levy (1969). They have obtained first and second
order stochastic dominance (FSD, SSD) which give optimal rules for the whole
class of increasing utility functions and the class of risk-averse utilities
respectively. Whitmore (1970) obtained third order stochastic dominance (TSD)
with the additional restriction of the third derivatives of the utility function being
positive. Bawa (1975) generalized TSD to the class of decreasing absolute risk-
averse utilities. Unfortunately, this general framework proved to be too general to
be very fruittul for portfolio analysis and asset pricing. Many authors generalized
the results of the basic mean-variance model, in particular by studying the effect of
higher moments on the portfolio choice problem and the pricing of risky assets.
Fama (1965b) and Samuelson (1967) used the symmetric stable distribution for
efficient portfolio selection. Rubinstein (1973) derived an equation for expected
return in terms of an arbitrary number of co-moments. Kraus and Litzenberger
(1976) developed a three moment CAPM for the valuation of risky assets. They
argued that risk-averse investors prefer skewness. Owen and Rabinovitch {(1983)
discussed the relevance of the elliptical class of distributions to portfolio problems
and showed that it extends the Tobin (1958) separation theorem, Bawa's (1975)
rules of ordering uncertain prospects, Ross’s (1978) mutual fund separation
theorems and the results of CAPM to non normal symmetric distributions which
are not necessarily stable. Chamberlain (1983) used the elliptical class to
characterize asset returns distributions that imply mean-variance utilities. Simaan
(1993a) developed a three parameter normative portfolio analysis where
idiosyncratic security risks are modeled as following a joint elliptical distribution
and skewness is generated by a single factor for the whole economy upon which
different securities have different loadings. He showed that his generating process
results in a three fund separation and provides a three parameter CAPM. Unlike
Kraus and Litzenberger (1976) who used a truncated Taylor expansion of the utility
function in their analysis, Simaan argued that the potential sensitivity of higher
moments to skewness and the dependence of expected utility on such higher
moments leave preference of risk-averse investors to skewness ambiguous.

Quite recently, Konno and Yamazaki (1991) proposed a linear programming
model. as an alternative to the classical model of Morkowitz, which used mean
absolute deviation (MAD) rather than variance as a measure risk. They showed
that, if returns follow a multivariate normal distribution, then their model is
equivalent to Morkowitz’s. Speranza (1993) generalized the Konno and Yamazaki
model using a risk function which is a linear combination of two sem; absolute
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deviation from the mean. While Konno and Yamazaki (1991) showed that the
MAD model did not require the covariance matrix, Simaan (1997) contends that
the computational savings from the use of MAD objective are out weighted by the
loss of information from the unused covariance matrix. He found that this would
result in greater estimation risk.

The purpose of this article is to refocus attention on the portfolio choice
nroblem using the framework suggested in Owen and Rabinovitch (1983) end
Chamberlain (1983). In particular, we discuss in the context of the portfolio choice
problem differences, if any, that may exist between the normal and a non normal
elliptica! distribution. Central to this concern is the role of Kurtosis as a measure of
fatness of tails of the distribution of asset returns in determining the optimal
strategy of risk-averse investors. This paper is organized as follows. In the next
section, we present the class of elliptical distributions and discuss some of iis
properties that are relevant to portfolio analysis. In particular, we prove a lemma
related to the covariance of functions of elliptical random variables which proved
io be useful in determining the conditions of optimality in a portfolio choice
problem. Section 3 is reserved to the analysis of portfolio selection problems when
asset returns follow a multivariate elliptical distribution. We prove the main result
in theorem 1 which enables us to determine, first, a general measure of global risk
aversion for this class of distributions that generalize the Rubinstein (1976)
measure. Secondly, the theorem is shown to provide a tool to establish many useful
results for the elliptical class of distributions including some main results in
Chamberlain (1983) and in Owen and Rabinovitch (1983). In portiolio selection
context, we discuss differences between normal and non normal elliptical
distributions, especially those with heavier tails than normal, focusing on the role
of Kurtosis as a measure of fatness of tails in determining the optimal strategy of
risk-averse investors. We conclude section 3 with a general diversification result
for elliptical distributions. Finally, some concluding remarks are stated in the last
section.

1. The Class of Elliptical Distributions

The class of elliptical distributions is examined in detail by Kelker (1970); it
provides attractive and appealing alternatives to normal distributions and includes
stable and non-stable members. Most members possess densities and when they
exist their contours of constant probability are elliptical, hence the name. These
densities, however, are more flexible than the normal density because their tails
could be longer or shorter than that of the normal.
Let AeR" be a fixed vector and let Q be a positive definite symmetric matrix,
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in general, XeR" is said to be elliptically distributed if and only if its
characteristic function has the form:

-2 -yl

¥ b - y # 3.
If we assume that X € R” has a density then we have the following definition:




Definition: X € R" is said to be elliptically distribured with location vector A
and characteristic matrix 3 if irs density is of the form:
\
fiX)=c,|0™ 7¢~(( —aya! X - A))
The function ¢{.) is ¢ positive function of a scalar vaviable and ¢, is ¢ constant
of integration.

When X eR" has an elliptical distribution with location vector A and
characteristic matrix Q we write X ~ £{A, Q\}

For example, if X € R" is maultivariate normal with mean vecior A and variance
covariance matrix Q) then its density is given by:

f(X) 2;'5) 72|02 ex p(«—%()( - A}IQ%(X —ﬁ}}, Hence it is of the form

given above,
Another example is the multivariate t-distribution with v degree of freadom. Iis
density is given by:

—(v+n) ]_'*f v+ n \l
1/ _ *\; -1{v _ 2 L_ﬁ
f‘(X) = o IQ _';2 (1 + {X L\} Q ()l A)j: v\’,here c, = Z ,)
; | y ) S v
' I} fvz)
\2/

The class of multivariate elliptical distributions includes’ the multivariate
uniform distribution, the symmetric Kotz type distributions (including the normal
d1strzbutzon) ‘the symmetric multivariate Pearson type 11 distribution, the

—_— “Symmetric -#ifultivariate Bessel distribution, the multivariate t-distribution, the
symmetric logistic distribution and the symmetric multivariate stable distributions.
We list, without proofs’, the following properties of elliptical dlStrletJUi’b.

Pl: Let X eR"” such that X ~ Z:'(z_\. Q) and let D with rank » Di=m<n and

f1IX7

define ¥ = DX then Y ~£&(DA,DQD') .
(X A Q1 Qy
P2: Let X=L ‘] : a| 1) and Q:L o “)
X, LA, 1 Qp
Then the conditional expectation is given by:
Eﬁﬁiid#’z)“@ 407003 (X5 - 4,)
P3: Let X ~ £(A, Q) possesses k moments

& See Gupta and Vargd {1993), p.70, for definitions.

P
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Ifk>1 then E(X)=A

I k>2 then the covariance matrix Y =72 {orsomev e R, .
P4: LetX ~&(A,Q), if any marginal density is normal then ¥ has a norma!
distribution. -
P5: Let X ~&(A.Q), if Q is a diagonal matrix. then the components of X are
independent only if X has a normal distribution.

Before presenting the main results of this article we prove the following usetul
lemma which generalizes a known result for normal distributions. We assume, in
what follows, that the density of the elliptical distribution exists and the second
moments are finite.

2 p S B ; ,

Lemma: Let X € R™such that X ~E(AQ) with joint density flx.xy) und
marginal densiiies f (.\';) and f>(xy) . we assume the finiteness of the first iwo
momenis where E (A J=A s.ov()x X )——— o i, j=12. Let q(} be a least once

differentiable function.

2 A Ay
Define  hlx;)= j 2L 2(_1!)@[1* and I{y)= I(l)\
| s T2 1)
If  lim g(v)(y)=0 then cov{X;.g{X; N=op Elg'(Y (X, ))

}‘—)i:&
Proof of the Lemma:

From the definition of the covariance we hav L'
cov(Xy.g(X5 )= E(X,g(X5 ) - A E(g(X1 )
= folg X )_ﬂ\x; + X9 }ﬂ.]xid,‘.': ~ A i ﬁ’f;"'{\)(: }\}

_‘f}_\'z
( ]
= g{\';i _{rlf x5 Hxp [y — A LE(; g(X5))
L‘a
J, A

= jg( ) i\‘ \E/.\’}}jl (\') L.f\} i A]E(g(‘}‘z)}

By P2: E(X|/xy)=4; + 2 (x; - A5)




A
soecoviXy, gly s, )= J-(E’(-*fz :i(/_\i L 212 {xs ~ A5 ) {\) ]dn A ELg(X, )}

. \ 022 J )
ry X -H'S';
=1y [gley )22 1(x; kix,
% 22
_\‘2 A .
Letting h{x, )= [ =2 {1)dv and integrating by parts. we get
Sl
( \
cov(X1.¥2) = 03] ~ o)+ e )+ e ol ey
“\ ‘\': /li
hiv)
Note that /#(— )= h{0)=0 and define i(v)=—=
()
I lim g(v)i(y}=0 then cov(X|.g(X2 )= E(g'(X, V(X))

y—ptoo

Remark: If X € R“ has the bivariate normal distribution then I(y)=1 and
cov(X 1. g{X3 )= 012 E(g(X,))

The class of univariate elliptical distributions coincides® with the class of
univariate distributions which are symmetric about a point (See Gupta and Varga

1993, p.70).
let XeR be a wunivariate random variable with elliptical  density

f(x):f(x; ;1.02) such that E'X}: u and (X' ):53 and define
h(,x]w f(L]dl and!( = }z(r)

o o2 I («")

We would like to study here some properties of the functions h(x) and H{x}. We

show in the next proposition that if j(r) is an elliptical density then A(x) is an
elliptical density and hence the function l(x) can be interpreted as a likelihood
ratio of two elliptical densities.

- : . : 2 )
Proposnlmn: Let X ~ 5(11. o2 J with density function f (x_): b (x; u.c” ) and define

M=

f (v)dv then there exists an elliptical random variable Y whose

-0

* It should be clear that this class coincides also with the symmetric location scale
parameters distributions in the sense of Bawa (1975). (See p.112 and p.116).
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E(x - p)*

density ish{x) with E(Y)=E(X)‘-"# andV (¥ )= 3y (x)

Furthermore,
Wx)= flx) if and only if X ~ N(/J 2)

Proof of the Proposition:

To prove the second part of the proposition it suffices to note that X ~ N (,u,o )
if and only if its density function f (x) satisfies the differential

Vg ot 5 [ — X \
equation f (x)=£ —F (x)
o
As to the nature of the functionZ(x), we notice first that h(— oo}zh(w):(}_
HAX -y
Secondly, since | ?_ F(y)dy=0 and f(x) is symmetric around, the
fi—x ° .

function A(x) is positive and symmetric around iz . It remains to show that
) )
[A{x)dx=1.

Since f(wc) is the density of the elliptical random variable X then

f(xpcr ) [LLYF;JJ 1

J
- 5 [ % i — 1!
We have h(:c} s Uo = f a ol | d)
e O ot
=i oo / \
Put w=>—=— and write h(x)— = v,g;{wz)dw: F }ciw but since
! J_

i S ) PORPRPRR S T 8 A

j w@‘{ j. iw =4 WE nave !le_x): _!w.;ﬁ(w W
=¥ e

| |
[




has a probability density function’ given by

But the random variable W :{
, o

,;O{w): 20‘¢(V)J%-) hence :’1( ):—2—1— ? (11 )’«?'W

x

‘f’_ ir:

We have:

J h(r)dx =2 jfz(r)zix =— J' j‘z‘gp )dfdx J‘_[t‘ga(f}dfdw (1)
T u x-zq 0w

Let ¢, (w) gp(w) and gon w Igon 1(t)dt for n=12,...... .
Note that if E{ ( b’ ”“1) exists, then ¢, (w) exists and we can write®:

on(w)= (_ )Z( 1y ey tw fr”” O @

Moreover since the probablllty density q_f)(w) vanishes on the negative half of the
real line, then £ (W & )= (n-1)o, (0)

Using (2) for n=2 we have @, (w) = jtgo(t )dz‘ —we, (w) 3)
Infegratmg by parts the Ilast term of the previous expression we get:

Iw Igo(t)dtdw 3 (w

L

Ref;)iacing in (3), we get: 23 (0)= I.frgo(r)ciidw = E(W2 )=1

0w

- oo 000
From (1) we conclude that jh(x)dx - _[ J'Igf)(f}:itdw =1
—o0 0w
We have shown that % x) is an elliptical density function.
Let ¥ be the random variable whose density is #(x), since h(x) is symmetric
around 1 wo inust have E(Y) EX)=pu.

To determine (¥), let 7 = |~—*| and notice that 7/(y) = o*E(?).

o

> See Kelker ( 1070) P.427.
* See Mokhtar (1974) P.543,




o= £

J.w 1ol dm’w—-‘.n jf{p(!)dfdw (4)

w 0 W

E(w?)= rj("" 1 h(y My =

-

wl—-

o’

“ & (IH--’ - ): Iwz jrgo(f )dtdw = Iwz (Igo2 (_w.)-l- we, (w )i
0

W 0

o 4
But Ju 11 v = [L gD(“‘H“’ = E(i\/—fi)_
. 512 120
o ‘v _ a4
Similarly, we have Ju (p,(li‘}ht I—@(u }«’11 M
: dey

F(Wn ) ———P( ! - ) . hence i"'(_}")——-iﬁ(k — )

3o 3V(X)
V(Y
V(x
For elliptical distributions with heavier tails than the normal we have K(X)>1, we
must havethen V' (¥)>V(X).

Furthermore, to evaluate the function /(x) at z, we evaluate first A{x) at 1 to get

Notice that the kurtosis measure of” X is given by K (X)=

W)= _)—I- ju'gp(u')dw :

U

Using again the relation goj w) _{rgo(r)d: - W) (w)

W

X —u )

We obtain:  20hi{)= > (0)= E(

N /
1) B0 )
~ . 5 =
/ (U) 207 f (;z]

A major subclass of elliptical distributions is the variance mixture of normal
distributions’. It provides attractive and appealing alternatives to normal
distributions as a model for the distribution of returns in markets with fat tails.
According to Owen-and Rabinovitch (1983), “the density of an elliptically
distributed random vector can always be presented as a nondegenerate variance
mixture of (at least two) normal densities™ (see p.746). Gupta and Varga (1993)
give an example (see p.142) which shows that the density of an -absolutely
continuous univariate elliptical distribution is not always expressible as a scale

o

We conclude that: Z(,u)=

! For a characterization of variance mixturc of normal distributions. see Kelker (1970) and
Gupta and Varga (1993).




mixture of normals. Wang (2001) describes 2 setting under which a  linear
combination (portfolio) of mixture of normals is a univariate mixture of normals.

We would like 1o study further the nature of the functions /4(x) and /(x) for this

particular subclass of elliptical distributions. We show. in particular, that if /‘( )
a discrete (continuous) univariate variance mixture of normal distributions then
hx) is a discrete (continuous) variance mixture of normal  distributions,

Furthermore, sinee  both densitics are  symmetric around 17, we show that

V¥)>¥(X) and /() <1 hence hlx) is a sort of mean preserving spread of /{x).

It f(x) is a density of a univariate mixture of normal distribution we can write it
as follows:
{ m
" . 2 2 i
I/ the discrete case: i [_x:,u.n-") > pip; (r WH.Of ) Where ("[)f(x:pq()'f) ts the
i=i
"
density of a normal distribution,  p; >0 v; ande‘, =1. Notice that
=]

ni

2 )
& o -
o” = Zp,—m

=

_ _ i hY
hix)= ]Lf(v)dv* [ a4 (Z?:p,gof (\ noj )j'a’r

—n a7 —_0r f—l /l
3 )

_ s 1i0; | Hy ( z},_’

=25 [ E5eiliae? o

=l ¢~ (_x of )

W

2 ; _ m 0 5

Since ¢/ \x: 4. o oi\x: .07 ) we have hlx)=3 2L o, O

' Cf," = o’

Therefore the function h(x) is a density of'a discrete variance mixture of normals.

2/ the continuous case: f(\ U o" ) _[eo X 2 MG(2). where gy 41.z) is the
g R

density of a normal distribution with variance Z (see Kelker p426). The function

G(z) is the cumulative distribution of Z . Notice that o2 = E(Z).

X = &
h(x)= Jﬁ—— vy = | fi—j—‘ [olv: w2 )dG(z) |y
- O7 -z 07 g

=1 - (J"ULV o(v; 12, 2 v dG(z)

UU L
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o

Since ¢'(y; y,z)— — % o(y; p1,z) wehave h(x)= j ~_o(y; y,z) dG(z)
JEZ)’
¥4
jvdG(v)
Put G(z) g and notice that this is a valid cumulative distribution.
IvdG(v)
0

e8]
We conclude that 7(x)= jqo(y; 1,2)dG(z) therefore the function h(x) is a density
: 0
of a variance mixture of normals.

We can verify by straight forward calculation that V(X ) z:( ) and

E(X - ,u)4 =3E (Z ) smuiariy v(Y)= E(Z_] we may conclude

E(z)’ o

thatV(Y) = %5_;'_(;%)4 .

When the density of the random variable X takes the form of a variance

mixture of normal f (x; ‘u,o'z): J-ga(x;-y,z)d(}(z), we have shown that the
0
random variable ¥ whose density #{x) is of the form of a variance mixture of

normals such that E(X )=E(Y ) "

c?zq:)(y; y7A z)dG(z)

The function /(x)= ;((t)) =0 = can be interpreted as a likelihood
_ X ;

E(Z) [l . 2)dG(2)

0

ratio of two mixtures of normals densities.

E’Jf)
E(Z)E L j——-}

To show that I(u)<1, we note, first, that the function wi(Z ):qfrf is concave

Evaluating this function at the pointx = £ , we can write / ()=

while the function w,(Z)=— is convex. On the other hand, by Jensen mequality

Jz

\
we have\jE(Z) > E(ﬁ) and ,_(j; = < EL_}% ! hsncef{y} <1

A/
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Thus we may say that the function fx) 1s more peaked at the center than h(x).

In addition, we note that V(¥)> V{X) since E(Z 2)> (E(Z))*. The random
variable X dominates stochastically Y in the sense of Bawa (1975) (see theorem
‘10 p.116).

We conclude that h(x) is a sort of mean preserving spread of f (x) since both
densities are symmetric around y .

Furthermore, the measure of kurtosis of the random variable X' is given by
4 2
Ex -p)* _ £2?)

W2 (E2))

fatter tail than that of a normal.

K(x )= ->1 which means that the distribution of X has

2. The Portfolio Selection Problem for the Class of Elliptical Distributions

Consider an investor with initial wealth wo >0 to be invested in » risky
assets available in the market and indexed by the set N = {1,2, ........ ,n} ,
Vie N define:

P; = the current (certain) price of one unit of asset ;
P; = the future (uncertain) price of one unit of asset

. . . -th
a; = number of units invested in the ;" asset

We assume that assets are infinitely divisible and investors are risk-averse
expected utility maximizers. Let the set of all at least twice continuously
differentiable, increasing and strictly concave functions (risk-averse ‘utilities) be

givenby U={f/f'>0, f"<0}.
For u e U, we define the portfolio problem as follows:

max E u( ZQEEB Subject to > a; P; = wy
\ieN ieN

The investor is assumed to be maximizing his expected utility of terminal wealth
given his initial budget constraint.

;b

= & ' : :
Define X;=— and q; = Vie N where X; is one plus the uncertain

P; Wy L : :
rate of return on the asset / and a; is the proportion of wealth invested in asset; .

Define the set of all feasible ﬁbrtfoﬁos: A= {l eR" /1 e= 1} where re€ R" isa
vector of ones and prime denotes the transpose of a vector. We allow short salis




here because, among other reasons”, we want to examine the conditions under

which short sales are not an optimal strategy.

In matrix notation. the portfolio problem is:  max E(u( wya' X))
ae

In what follows, the random vector X € R" is assumed to have an elliptical

distribution.

The following theorem gives the optimality condition for eiliptical distributions. It

proved to be useful for establishing many results including some main results

stated in Owen and Rabinovitch (1983) and in Chamberlain (1083). In particular, it

enables us to characterize the efficient set in the portfolio space analytically and to

show that two funds separation holds for elliptical distributions. The theorem

provides us also with a global measure of risk aversion that can be used to

determine the optimal investment strategy for a risk-averse investor when faced

with elliptical risk.

Theorem 1: Ler X € R" such that X ~ Z{A.Q

of the lemmu and the covariance matrix X =%

). Assume the regularity conditions
Y is non-singular’. Then, YuelU .

the optimal portfolio must satisfy:

s = =} -1

2 e ¢2 A ZA = e

—— +— : T Wheie
e'Tle  M(wg.a'X)\ e'T'A T

M. v)=— 1-1-”12(:;"(1;1,“),-)2 (p))

E(_u '(11'{]}’))

=

Proof of theorem 1:

Define the Lagrange function:

L= E(u(wya'X))+ A(l —a'e). where 4 is the Lagrange multiplier.
From the first order conditions of optimality we have:

oL b 3 - pe
— = wy E(Xu'(wya'X ))-A=0 VieN (1)
C-"i.";
L,
And L4 =l-d'e=0
oA

We have (n + 1) equations in (# + 1) unknowns
From (1) we can write:
wo leov(X ;1 (wga'X )+ E(X EW (woa'X))|=2  VieN

From the lemma we have:

® With restriction on short sales. it is quit difficult to characterize the efficient set of
portfolios. Dybvig (1985) showed that kinks in the efficient set are the rule rather than the
exception if short sales are not allowed.

” This means that assets are linearly independent. That is. no asset can be written as a linear
combination of other assets.




(]
Lt

wo (cov(X; wgaly VE(@" (woa' X ¥lwga'X )+ E(XE('bwga'X)=2  VieN
Put¥ =wqa' X, we write in matrix notation:

11'(2, ZabQ"(YV(Y)) 4wy AE@ (V)= de

Pre multiplying bthi . we get:

11'12, E(U"(—)"y( Y )a + n'“E_]z\E[u 1)= e (2)

Pre multip!yinu again byve'. we get:

11'(, (" (YY) + e’ s AE (w'(v))=ze's7 e

a— " o = ’“_] o f"_,.'
Hence A= "'”ﬁ(“ () ))+ woe' ST AE(u'(Y))

v —\—i B
el ¢ e IL’
Rearranging (2) and substituting the value of 2 we get:
e  extla (2la 2l
a= + =

{.J'S_i(’ ﬁ"j(“"“.u'){_} l\ L"E_—l,ﬁ U!E—.]e
—wo E(u"(woa X Y(wpa'x))

E(u'(woa'X)) -

The function M{(b.y) can be interpreted as a global measure of risk aversion.

b

where M (wq.a'X )=

Note that (. 3)> 0. to see this it suffices to recall that h(y)> 0 and that the

utility function is increasing and concave.
It is clear that the relevant measure of global risk aversion in the case of elliptical
risk is A7(w(. v). In general, this measure needs to be estimated if exact optimal

portfolios are desired. In addition, this new measure generalizes the Rubinstein

(1976) measure of risk aversion which is relevant only for the normal subclass of

elliptical distribution. To see this set w, =1 and note that if ¥ is normally
- - : : —E(u"(v) g g
distributed then /(v)=1 and hence M (1) becomes R[}*)z—(—(‘_)—) which is

E(u'(y))
the Rubinstein measure.
Furthermore, unlike the Rubinstein measure which depends only on the mean and
the variance of the normal distribution, the measure M (wy.v) depends on the

kurtosis of the particular elliptical distribution used as well.

.zl A .
Define the portfolios «" == ¢’ = et i ryze'Z"lA(a’ —a‘) ;
, 225l e A

The portfolio ¢ is the global minimum variance portfolio, «' is an expected
return to risk tradeoff portfolio and 5 is an arbitrage portfolio that uses no wealth

since 'e=0 .

This theorem implies a main result of Chamberlain (1983), that is. the efficient set
(i.e. the set of all optimal risk-averse portiolios) is mean-variance efficient.

Ia
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Corollaryl: The efficient set of portfolios’ is given by: A® = Y{a(a)} where
acsRk,

O

ala)=a" +—n
a

- This set is spanned by the two frontiers portfolios’’ a” and a'. Hence the
elliptical class implies two funds separation. However, if A =ke wherek e R, this
class implies one fund separation.

In the portfolio space, the efficient set contains the same elements whenever we
have the same mean vector A and the same covariance matrix ¥ regardless of the
particular elliptical distribution assumed. Furthermore, under these conditions, the
mean variance choices'” are identical to those of the case of the normal distribution.

If we introduce a riskless asset, in addition to the » risky assets, with one plus

re—1
Z g ; :
rate of return 7y < — then, like in the normal case, the efficient set is spanned
eZ e
. | :
_ . X (A-ne o 3
by the riskless asset and market portfolio” a” = - 1( b ) which is the same
e’Z" (A —rge)

for all investors given homogenous beliefs about the parameters.
Thus every risk-averse investor with utility function u e U has an optimal portfolio

u

given by 5" € R""! where b* =[
0

0 Cu - :
J+ag [amj and a; is the proportion
invested in risk. It can be shown' that af is given by

1 = . .
ag = £ 16 , where x,, =(1—a0 )ro +ag¥y,, *, 1s the uncertain

M(w0=xm) o,";

return of the market portfolio, ,, = E(r,, ) and cr,%, =¥l )

, 1
' The set of frontier portfolios is given by: A = Y{a({z)} where a(a): a’ +—n
~ oeR \ &

"' 4" is a frontier portfolio, it is efficient only if ¢’S A >0

' In the mean standard deviation space, we have the familiar hyperbolic relation between
frontier portfolios. )
"> The market portfolio is the unique solution to the mathematical programming problem:

a'(cr)A — 7y 1

such that ala)=a” + —17.
a>0 | \Ja'(a)za' (@) a

'% This is a direct result from the first order condition when using the previous lemma.




Notice that a necessary and sufficient condition to have a positive demand for risk
is that g, —#y >0.

If a risk-averse investor “estimates” correcily the parameters (i.e. A and Z)
while he could not “estimate” correctly the functional form of the non normal
elliptical distribution (for example the investor might assumes normality), then he
will hold an efficient portfolio but with relatively higher (or smaller) risk. On the
other hand, if all risk-averse investors agree on fact that the distribution is
elliptical, in particular they might disagree about the exact functional form of the
distribution and hence the relevant measure of risk, as long as they have
homogenous beliefs about the parameters A andQ2, their optimal portfolios are

elements of A hence efficient. This fact aliowed Owen and Rabinovitch (1983) to
derive a generalized CAPM that does not require investors® full agreement upon
the specific functional form of the asset returns elliptical distribution. In fact, as
long as there is agreement about the parameters of the elliptical distribution(s), all
risk-averse investors perceive the same mean-variance efficient set and hence an
equilibrium pricing model can be derived®.

Unfortunately, showing that the individual optimal portfolio is mean-variance
efficient does not imply, in general, that expected utility is independent of higher
order moments. The potential sensitivity of expected utility to kurtosis should
imply different behavior of risk-averse investors when faced with a non normal
elliptical distribution as compared to a normal distribution even though it presents
the same mean-variance choices. :

Before investigating this line of thought further, we first present the following
consequence of the theorem. '-

Coroliary2: Consider two investors with utility functions uj,uy € U and assume

they have homogenous beliefs about the parameters A andC) , investor i has
initial wealth w; and believes that the functional Jorm of the elliptical distribution

FF P=13

Define the two problems:

max j'uf(wia'x)ciF’i(x):max Ei(u;{w;a's)) i=1.2.
aeA <eR" : asA | 7

. * . ~ - = i * S P
Let a  be the optimal solution o P, if a satisfies the condition:

therxa Yoy X" )| =y By oy " o iy’
- wi £y 1 \wl‘!l{a i ‘f"’IXa _ ““’2E2 uz(wz}fa }72 ‘1:.22)(41-

E; (ui(wl}('a* )) | E, (u'z [sz'a*»

o
Then a is optimal io P>

' See Owen and Rabinovitch (1983) for a discussion of this noint




For example, let investor 1 have constant absolute risk aversion (CARA) utility

L
o =u'(v) L _
function with —L:a and assume that this investor believes that returns
u'(v)
follow a normal distribution with parameters A.X then the optimal solution'® for
t o : . : , * _om | 3 . .
mvestor 1 IS given by a =a + 7. if  in addition
O_’h-‘i

{ L) rf % IT r ® )
— Wo E;Lzh(w-,ft u }1(“’1)( u )) ¥, . ..
R =N 2= ¢y holds then « is optimal for investor 2 as
E: (Hé {11'2 Xua ))

well.
Remark: The result of corollary 2 is similar to a theorem given in Kallberg and
Ziemba (9) in the case of normality.

In order to compare the behavior of a risk-averse investor. with initial wealth
w . when faced with a non normal elliptical distribution instead of a normal
distribution that presents the same mean-variance choices. we consider two
alternative random vectors of returns X ~ N(A.X) and Y ~ £(A.Q). We assume,
furthermore. that the covariance of Y is given by £ =30 . Given these conditions,
the efficient sets under X and under YV are identical regardless of the existence of
the riskless assct. The two alternatives present the same mean-variance choices.

i 'Y‘_i 2
~ . . s ~ €
If we assume the existence of the riskless asset with sure return 1y <———— then

==
2 P L)

the market portfolio is the same for both alternatives. It is given, in both cases. by

oo
i & (D-=1ye)

G!E-I (..f.\ == :"06’)
Let the end of period wealth be given by 1=y (1 —aq by +agry, ). where r,,

is the uncertain return of the market portfolio, with 2, = E(r;,, ). o5 =V(r,) and

aq, the proportion invested in the risky assets. K
We have: E(w)=wq (1 - ag Iy + apttm)
V{w)= 11-'5(150‘%
E(w - F(nw‘ = wf; a(!;' E(r,, — 'y
if r,, ~N Lum _.af,) we can show. for § = {1:2_.3 ....... } . that:

1 These are the only conditions that imply a closed form solution. See Epps (1981)
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(
: W=
k(rm ~ ) :ﬁ
LO k=2s+]
’ ,( B) . . : ») s i
It r, ~ gl_;zm.(rm) with density given by (x; 1, o ): -Ign(_.\‘:;z.:}d(J(z), where
0

@lx:p.z) is the density of a normal distribution with variance Z and E(Z)=05,

then. for y = 1‘2 . } we have:
. .
{—J—)(“'Q}‘EZ k =2s
E(’m Ky ) =1 25 ¢!
|
'l“ k=2s+1

-

Let the end of period wealth be x,, when r, ~ \(,um ;,) and v, when

P ~ [,u‘,” o‘m) then we have:
L(l m — E\WVy )Y‘ E(Z ) )
P - > 1
‘-P(‘m B i )) (E(.Z ))

The expression above is greater than one since the function w(Z)=2Z" is convex

Vs=2 and k= 2s

for Z >0 and s> 2. hence by Jensen inequality we have £ (Z ? )> (E (Z ))‘

Define the two problems:  P;: max {qp cz“) b(u( X, ))}

a,,

P:: max {({?2 (.(Il_j ) = E(I'{(..ym ))}

r:(:‘

The function el is assumed to exhibit consistent risk aversion. A utility
function exhibits consistent risk aversion if the & derivative 1) (1) has
uniformly the same sign Yw. For risk-averse utility functions, Scott and Horvath
(1980) proved that u(’:".}{w_)>0 for odd & and u{k-’{_u-')<0 for even k. In

particular, the contribution of even central moments to expected utility in a Taylor
expansion around the mean is negative. Examples of utilities exhibiting consistent
risk aversion include the logarithmic, the power and the CARA utilities.

We write the expected utilities in the problems P, and P, as a Taylor e\panbmn
around the mean as follows:

E(H(—an ))': H(E(xm ))+ i "

(E@N uHUE(,)) (D
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2k 2k

Bl )=lEG )+ 278 % 9 )0 0,) @

k=1

Notice that E(x,, )=E(y,, )= wO.((} -y )i‘o + a{)ﬂm): E(w)
Furthermore, since £ (Z & )> (E(Z ))k and u®) (w) <0 for even k , we have:

2k
E(ulx,, ) - Elu(y,, )= ZIHO ao 2 ){(E(Z))k —_E(Z"‘)}J(Zk)(E(w))M)

2k i
This means that x,, dominates stochastically y,, for the class of utility functions
ﬁxhibztmo consistent risk aversion.

Let ao be the optimal solutlon to P, and define w =Wy ((l —-ayg }—0 +a0rm) we
must have:

2 (Blulen))=0

g

it —ro Y (o o 3 0 CEHER 0 (gt an (50, ))-0

s 2“k! da,

Evaluating the first derivative of (2) at ao we have:

%@:{um, )=
i (e o 35 CHEL) 0 (g on(afo o e

oy 2°k!
Expression (4) is negative because of (3) and the fact that £{Z ( ) (E (Z ) k

Let ag be the optimal solution to Py, then from (4) we conclude that ao < (Z(} :

The forgone opportunity cost of mean-variance investment strategies was
investigated by Levy and Morkowitz (1979) and Simaan (1993b) among others.
+ and Morkowitz (1979) found that CARA utilities provided the worst mean-
variance approximation to expected utility among all the utility functions
**** mployed. Simaan (1993b) used CARA utilities and a parametric joint distribution

vhere idiosyncratic security risks are modeled as following a joint normal
distri%)ution with a single factor having different loadings to model the skewed -
noise. When a riskless asset is introduced, he found that the optimization premium
is at least ten times lower than the typical management fee regardless of the degree
of relative risk aversion. The forgone opportunity cost of mean-variance i Simaan
( 11}{3;{3) is due to the ignored skewness parameter, what is needed in our setting,

however, is an investigation of the forgone opportunity cost within the mean-
variance framework due to the ignored kurtosis parameter. While the optimization
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premium due to ignoring skewness was found in Simaan (1993b) to be negligible
compared to transaction costs, there is enough empirical evidence'” to believe that
this is not the case when ignoring kurtosis.

Let the investor has a CARA utility function with — ) =q.

u'(y)

If r, ~N(Ium,o-,%,) , then under x, the optimal portfolio is given by

® L ﬂm —?'0
ay =—"——.
ow,o

If we assume instead that 7, follows a variance mixture of two normals with

denSIty glven by f(x Huns>C m) p@(x )un SJI ) (lhp){o(xﬂ'tum"oﬁg)’ where
go(x; U, O ) is the density of a normal distribution with variancec?, then y,, is 2

variance mixture of two normals with £ (ym ) =W, ((1 ~, )ro +a ym} and

B
V(ym):wOaOo-m )
Under y,  however, the investor’s optimal portfolio must satisfy:

1 . 1um - ’rO ]
d, = where
’ ‘M(WO s Vm ){ o‘ri

t?exp(() Sa wgao oj ) (1- Q)exp(() 50 woaoa'z )
pexp(@.ﬁazwgagalz) (1- p)exp(O.SazwgogcJ‘% )
and 6 = 5 s 012 5

poi +(-plo
Notice that when 0'-12 > 0‘22 , we have @ > p . Similarly, when 512 < 0'22, we have
(1 9) ( ) We conclude, in both cases, that M (wo, ym) >ow, for all

a; >0,

M(wo, ym)=awy

) . ok . sk *
. Hence the optimal solution g under y,, satisfies ay <ay.

To shed more light on the role of kurtosis in determining the optimal investment
strategy, we consider an example'® provided by Mukhtar (1974).

"7 Duffie and Pan (1997) states that, for many markets, returns have fatter than normal tails.
In particular, the S&P500 daily returns from 1986 to 1996 have an extremely high sample
kurtosis of 111 and negative skewness of -4.81. Longin (1995) studied the behavior of daily
returns in the French stock market over the period 1977-1990 and found deviation from
normality with high kurtosis of 6.294 and relatively small negative skewness of -0.532. The
Indian stock market was studied by Broca (2002) for the period 1985-1998.The empirical

series displays non normality with severe kurtosis of 5 046 and slight positive skewness of
0.149,
¥ See p.543 in Mukhtar (1974).




142

Let .\, for ke {23’} . a sequence of random variables with densities eiven bv:

‘ ( I Y (1 N 5 : 73
,f'(x:_,u.l):l | —— J‘cp(x:_,u._l]%- l —— g.)(_x;,u.k")‘ where @lx; .o’ ) is the
A k . )

.__'l/ \k_'_lx

density of a normal distribution with mean £ and variance s~
Notice that E(X; )= and V(X;)=2 Yk . As pointed out by Mukhtar (1974),

Xy follows a scale mixture of normal distributions which converges weakly to

o(x: 12.1).
However tor sufficiently large k. the Rurtosis measure
e 4
: E\X) —u I 2 . : .

K(X,)= ( . ) :—(2 +k‘") is quite large compared to that of the normal
af \2 4 ’ =
'."i‘\.ll'/("k r\ ,};

distribution.

If we reconsider the prevmux mvestor’s problem with the uncertain return of the
market portfolio being given by X, we have then:

(k* = 2)+x° exp(O.S(x:u-’?a{f (k2 -1))
2(1(1 —7)+7exp(0 Sa wia; (;fz —1 )

Let a(k) be the investment in risk, we have:

M, (.“"n Vo ) = oW,

(“ (kz ' )exp( 0.5¢ " w{,( - lXa(k))3)+l R ) (0

alk )=+ - - .

' [._k: -2 )e\(p(— 0.5a° Wy ( lxa( ) )+ k= oaw, J

Notice that Vk € {2.3... (J<a{k)<—_L. Hence, with the uncertain return of

the market portfolio being given by X;. Vke{23... }_. the investment in
risk «(k) is smaller compared to both the limiting normal distribution cp{‘,\‘;‘u,}}

; ; : AL =¥ N —
with optimal solution ¢, = *—" and to the normal distribution ¢{x: 2.2} which

aw,
has the same mean and the same variance as X, with optimal solution
H—Ty

dy =

20w,
Furthermore, for sufficiently large k. (k) is sufficiently small. In particular, we

see that the limit  lim a(k) must be 0. For suppose that llm alk)=1>0,

i e
replacing in (1) and taking limits we get / = 0 which is a contradiction.

The sensitivity of expected utility to kurtosis and the other higher even central
moments imply that a risk-averse investor demand for risk is smaller when faced
with a fatter tails clliptical distribution instead of a normal distribution that presents
the same mean-variance choices.




If there is no riskless asset. using similar arguments as above, we can show that
the optimal portfolio of a risk-averse nvestor is closer to the minimum variance
portfolio when faced with a non nor mal elliptical distribution with fat tails instead
of a normal distribution that presents the same mean-variance choices.

Many authors (See for example Brumelle, 1974 and Scheffman, 1975) were
concerned about conditions on the distributions of asset returns under which
diversification is the optimal investment strategy for all risk adverse investors.
Mostly in a two assets world, they gave sufficient conditions for positive
diversification i.e. holding assets long. These conditions have been associated with
the notion of negative interdependence between assets.

In general. negative correlation is neither necessary nor sufficient for
diversification (See Brumelle, 1974). However, when returns follow an elliptical
distribution the usual correlation coefficient is all that is needed as model of
dependence, to study diversification. The next theorem generalizes a known result
for normal distributions'” to the class of elliptical distributions. It gives necessary
and sufficient conditions for short sales not to be an optimal investment strategy for
all risk-averse investors.

Theorem 2: Let X € R such that X ~ E(A.Q) where Q is non singular. then all
risk adverse investors hold non negative (positive) amounts of each asset if and
only if:

)  A=ke forsome keR

iy Q7 le=(>)0

Proof of theorem 2:

Without loss of generality set w, =1. According to theorem 1, VueU the optimal

solution satisfies: ¢ =d +—F— 77
M (a'X)
Qe Q~'A | ._
Wherea' :——-T— ;. Sy and 77 = ¢'Q lA{uf ~a' ) and
L"Q_ ¢ U'Q_- A

—E("(y )f("))
M, (v)= g(.u (v) '

In particular, for constant absolute risk aversion (CARA) utility functions with

» R T
. (1 =a.aecR,.wehave M, (v)=M,(y)= aF( 4 ')).
u (l ' E(g_m’)

|
. . . ; (I e .
1/1f A=ke then «* =4’ and 77=0. Thus we have a* =" =—— YuelU.

H'Q‘]e

19 . . .
| am unable to provide a reference even though 1 should think it must have been stated
somewhere.




But ¢'Q'e>0 since Q7' s positive definite, hence QO le>0 implies
a” 20 YueU

2/ Ifa* >0 YueU, thena® =a" +-

——F———=n20 VaeR, , in scalar notation
M_(ax)" ¥

we have g% = a}f s

; ;20 VaeR,

My {a'X)
We show in this case that 7=0. Suppose 77# 0, then there exists je N such that
n; <0, note that lim M, (y):() implies a; <0 contrary to our assumption,

—0
hence n=0.
-1 e | re~—1
: - Q QA
But 77 =0 implies = f hence A= E———]——-e = ke
e'Q7'A e'Q7e e'Q e
5 Qle e i :
Furthermore, if A=ke then a s VueU but this is nonnegative by
e'Q e
assumption.
Since ¢'Q e >0 we must have Q le>0. O

For elliptical distributions, according to the theorem, short sales are not the
optimal investment strategy for all risk-averse investors provided that means of
asset returns are equal and the inverse of the variance-covariance matrix has non
negative (positive) row sums.

Conclusion

For many markets, previous empirical studies have shown that returns have
fatter than normal tails with an extremely high sample kurtosis. The class of
elliptical distributions provides attractive and appealing alternatives to normal
distributions in modeling the empirical distribution of returns since their densities
are more flexible than the normal density because their tails could be longer or
shorter. We derived a lemma related to the covariance of functions of elliptical
random variables. Based on this result, we obtained the conditions of optimality for
the portfolio choice problem and showed how to derive many useful results for the
elliptical class of distributions including somie main results in the studies of
Chamberlain (1983) and of Owen and Rabinovitch (1983). In particular, the
efficient set, in the portfolio space, is obtained analytically. Furthermore, 2 general
global risk aversion measure which generalizes the Rubinstein’s measure was
derived and shown to be relevant to the case of elliptical risk. This new measure
was shown to be sensitive to the fatness of tails of the distribution of asset returns.
If 2 riskless asset exists, the sensitivity of expacted utility to kurtosis (and the other
higher even central moments) implies that a risk-averse investor demand for risk is
smaller when faced with a fatter tails elliptical distribution instead of 2 normal
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distribution that presents the same mean-variance choices. When the kurtosis
measure gets sufficiently large, a risk-averse investor tends to invest all his wealth
in the riskless asset even when the variance remains constant. While the forgone
opportunity cost of mean-variance investment strategies due to ignoring skewness
was found in Simaan (1993b) to be negligible compared to typical transaction
costs, there is enough empirical evidence to believe that the forgone opportunity
cost within the mean-variance framework due to the ignored Kurtosis is not
negligible.

Finally, a general diversification result for elliptical distributions was derived. We
showed that short sales are not an optimal investment strategy for all risk-averse
investors if and only if the means of asset returns are equal and the inverse of the
variance-covariance matrix has non negative (positive) row sums.
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