SYNTHESE ET ETUDE STRUCTURALE D'UNE NOUVELLE PHASE Bi₂SrTeO₇

L. Loubbidi¹, A .Chagraoui¹, B. Orayech², M.Naji³, A. Tairi¹, A. Moussaoui¹, O. Ait Sidi Ahmed¹, I.Yakine¹, J. M. Igartua²

(1) Laboratoire de Physico-Chimie des Matériaux Appliqués (LPCMA), Faculté des Sciences Ben M'sik - Université Hassan II – Casablanca, Maroc.

(2) Departamento de Fisica de la Materia Condensada, Universidad delPais, E-48080, Bilbao, Spain.

(3) European Commission, Joint research center, Institute for Trans uranium Elements (ITU), Postfach 2340, 76125 Karlsruhe, Germany.

E-mail: leila.loubbidi@gmail.com

Résumé

L'analyse radio-cristallographique des compositions, prises au sein du système Bi_2O_3 -SrO-Te O_2 , nous a permis de synthétiser une phase nouvelle Bi_2SrTeO_7 , cristallisant dans le système cristallin cubique de paramètre de maille a=10.906(7) Å et de groupe d'espace Pa-3 [1].

La structure cristalline a été déterminée en utilisant le logiciel Rietveld moyennant le programme Full Prof [2]. Le bismuth Bi^{3+} et le strontium Sr^{2+} occupent le même site 24e, les tellures $Te^{6+}(1)$ et $Te^{6+}(2)$ occupent respectivement les sites 4a et 4b, les oxygènes $O^{2-}(1)$, $O^{2-}(2)$ et $O^{2-}(3)$ se localisent dans le site 24e respectivement.

Mots clés : Bi₂O₃, Diffraction de rayons X, SrO, TeO₂.

Abstract

The investigation in the system Bi_2O_3 -SrO-TeO₂ reveals a new phase Bi_2SrTeO_7 , crystallizing in a cubic unit cell, space group Pa-3 [1] and lattice parameter a = 10.906 (7) Å.

The crystal structure was determined by means of the Rietveld method using the Full Prof [2] program. Bi^{3+} and Sr^{2+} occupy the same site 24e, Te^{6+} (1) and Te^{6+} (2) occupy the sites 4a and 4b respectively, the oxygen $O^{2-}(1)$, $O^{2-}(2)$ and $O^{2-}(3)$ are located in the site 24e respectively.

Keywords: Bi₂O₃, SrO, TeO₂, X ray diffraction.

1. INTRODUCTION

Les matériaux solides comportant des éléments à paire électronique ns² non liée se révèlent souvent particulièrement intéressants tels que le bismuth et le tellure, en raison :

✓ D'une part de l'originalité de leurs structures cristallines marquées presque toujours par l'activité stéréochimique intense des paires libres.

✓ D'autre part des propriétés électriques induites par l'anisotropie électronique des éléments constitufs [3][5].

L'oxyde de bismuth Bi_2O_3 présente un doublet non liant $6s^2$ dans sa structure électronique capable de générer des propriétés particulières aux matériaux en intervenant sous différents aspects. Il peut ainsi favoriser la polarisation des composés et l'apparition de propriétés liées à l'absence de symétrie telle que la piézoélectricité. La paire libre confère au bismuth une polarisabilité élevée qui, facilitant la mobilité des ions en son voisinage, induit des propriétés de conduction ionique intervenant dans un nombre considérable d'applications, en particulier dans le domaine énergétique [6].

Les traveaux menés au sein du laboratoire de Physico-Chimie des Matériaux Appliqués (*Université Hassan II – Casablanca, Maroc*) sur les systèmes Bi_2O_3 -ZnO-Te O_2 [7], Bi_2O_3 -BaO-Te O_2 [8], Bi_2O_3 -CaO-Te O_2 [9] se sont montrés importants en raison de la mise en évidence de nouvelles phases originales. Ces résultats encourageants nous ont permis d'entreprendre et d'approfondir l'étude du système Bi_2O_3 -SrO-Te O_2 .

2. LA PROCEDURE EXPERIMENTALE

La phase nouvelle Bi_2SrTeO_7 a été isolée à partir de mélanges, en proportions convenables d'oxydes Bi_2O_3 , SrO (SrCO₃) et TeO₂. Ils sont homogénéisés par broyage prolongé dans un mortier en porcelaine. Le mélange réactionnel est placé dans un creuset en alumine puis porté successivement aux températures suivantes 700°C, 800°C et 850°C pendant 24h pour chaque traitement thermique, suivi d'une trempe à l'air. Les traitements thermiques ont été entrecoupés par broyage afin d'obtenir des phases pures. La localisation de cette phase au sein du système ternaire est présentée dans la Figure 1.

La pureté de la phase préparée a été suivie par diffraction des rayons X sur poudre. Elle a été effectuée à température ambiante sur des échantillons (finement broyés).

3. ANALYSE PAR DIFFRACTION DES RAYONS X SUR POUDRE

Le diffractogramme X de la phase stabilisée a été réalisé à l'aide d'un diffractomètre de marque Philips X'Pert PRO, utilisant la radiation K α ($\lambda = 1,5406$ Å) d'une anticathode de cuivre. Le spectre de diffraction des rayons X est obtenu par comptage pas à pas de 0.01 °/min, sur un intervalle angulaire 2 θ (°) de « 10-100 » pour un déroulement lent.

4. RESULTATS ET DISCUSSIONS

4.1 Etude par diffraction de rayons X

Nous avons entrepris l'investigation de tout le système ternaire Bi_2O_3 -SrO-Te O_2 . Dans les conditions expérimentales retenues (broyage du mélange réactionnel, traitement thermique, trempe à l'aire), la pureté de la phase nouvelle Bi_2SrTeO_7 préparée a été suivie par analyse de diffraction de rayons X.

Le tableau 1 présente le relevé dhkl du diagramme de diffraction X de cette phase.

4.2 Affinement structural

L'affinement structural de la phase nouvelle Bi_2SrTeO_7 (figure 2) a été effectué en utilisant le logiciel RIETVELD moyennant le programme Full Prof [2].

Avec plusieurs cycles d'affinement, les facteurs de confiance de l'affinement se stabilisent à R_F =9.025 % et R_B =7.505 %.

L'ensemble des caractéristiques radiocristallographiques, les conditions d'acquisition et les paramètres structuraux d'affinement de la phase nouvelle Bi₂SrTeO₇ sont rassemblés dans le tableau 2.

Le calcul de la somme des valences de liaisons (BVS) souligne, à l'évidence, que les atomes de (Bi, Sr) occupant le même site (24a) sont en coordinence 8.

Les atomes de bismuth et strontium sont entourés par huit atomes d'oxygène de type 1, 2 et 3 à des distances allant de 2.2142 Å à 2.9206 Å. Cette distance est proche de la somme des rayons (1.42 + 1.17) Å, proposée par Shannon [10].

hkl	Θ(°)	d _{hkl} (Å) (observée)	d _{hkl} (Å) (calculée)	%
210	9.195	4.82	4.87	6
211	10.07	4.40	4.45	5
222	14.39	3.12	3.14	100
230	14.86	3.00	3.02	3
322	16.52	2 71	2 64	50
410	16.57	2 70	2 64	24
411	17.09	2.62	2 57	4
331	17.59	2.52	2.50	2
421	19.05	2.37	2.38	4
332	19.66	2 31	2 32	6
341	21 22	2 128	2 139	7
431	21.22	2 123	2 139	3
432	27.27	2.120	2.100	0
402	23.66	1 919	1 899	35
522	23.00	1.917	1.033	18
352	25.72	1 785	1.000	10
532	25.00	1.762	1.769	4
611	25.92	1.702	1.769	- 4
451	23.33	1.750	1.709	5
<u> </u>	27.33	1.672	1.002	3
452	27.42	1.072	1.002	32
4 <u>5</u> 2	20.04	1.038	1.020	10
04Z	20.12	1.034	1.020	10
030	20.39	1.019	1.020	0
<u> </u>	20.73	1.602	1.608	4
031	20.01	1.596	1.000	 10
444	29.40	1.5088	1.5743	10
362	29.74	1.5526	1.5581	2
271	31.05	1.4933	1.4842	4
552	31.14	1.4896	1.4842	2
633	31.38	1.4794	1.4842	3
372	33.59	1.3923	1.3852	4
561	33.68	1.3889	1.3852	2
470	34.51	1.3595	1.3528	6
562	34.61	1.3561	1.3528	3
4/1	35.12	1.3388	1.3425	3
563	36.03	1.3094	1.3036	5
653	36.13	1.3062	1.3036	3
555	37.52	1.2647	1.2594	3
662	38.11	1.2480	1.2511	15
382	38.22	1.2449	1.2429	8
654	38.41	1.2399	1.2429	2
480	39.29	1.2165	1.2194	8
481	39.40	1.2135	1.2119	4
664	41.02	1.1735	1.1627	2
483	41.89	1.1536	1.1561	2
574	42.18	1.1471	1.1497	3
392	43.04	1.1286	1.1249	2
844	43.89	1.1101	1.1132	6
490	44.03	1.1082	1.1074	3
492	45.33	1.0831	1.0853	5
674	45.47	1.0805	1.0853	3
854	46.47	1.0624	1.0644	2

Tableau1 : Relevé dhkl de diagramme de diffraction X de la phase nouvelle Bi₂SrTeO₇

Fig.1: Localisation de la phase originale Bi₂SrTeO₇ au sein du système ternaire Bi₂O₃-SrO-TeO₂

Fig. 2: Affinement structural de la nouvelle phase Bi₂SrTeO₇

Groupe d'espace	a (Å)	VolumeÅ ³	Domaine angulaire	Pas de mesure	Rp	Rwp	Rexp	R _B (%)	R _F (%)
Pa-3	10.907(4)	1297.65(7)	10°< 0 <99,99°	0,01°/min	17.5	19.4	5.43	7.505	9.025

Tableau 2: Les résultats de l'affinement structural de la nouvelle phase Bi₂SrTeO₇

Tableau 3: Les positions atomiques et les facteurs d'agitation thermiques de la nouvelle phase Bi_2SrTeO_7

Atome	Site	x	У	Z	Biso
Bi	24e	0.7287	0.0214	0.7424	1.4100
Sr	24e	0.7287	0.0214	0.7424	0.0200
Te1	4a	0	0	0.5	1.7000
Te2	4b	0.5	0	0.5	0.5000
01	24e	0.8601	0.9543	0.6030	3.4000
02	24e	0.8700	0.6071	0.5542	1.6000
03	24e	0.5210	0.0025	0.8120	0.4043

Bi/Sr	O1 ⁽¹⁾	O2 ⁽¹⁾	O3 ⁽²⁾	O4 ⁽²⁾	O5 ⁽²⁾	O6 ⁽³⁾	O7 ⁽³⁾	O8 ⁽³⁾	Valence
O1 ⁽¹⁾	2.2142	4.72(2)	3.461(8)	3.060(2)	3.13(3)	4.38(5)	1.25(5)	4.80(5)	0.723
O2 ⁽¹⁾	166.8(1)	2.5347	3.75(3)	3.46(3)	3.826(4)	1.25(3)	5.05(5)	2.37(5)	0.304
O3 ⁽²⁾	83.6(6)	80.7(8)	2.9206	2.78(3)	5.090(2)	2.69(4)	3.26(5)	4.84(5)	0.107
O4 ⁽²⁾	87.9(1)	143(3)	25.3(1)	2.4998	4.519(2)	3.26(5)	2.49(5)	5.02(5)	0.334
O5 ⁽²⁾	141(2)	86.6(9)	86.9(1)	104.6(4)	2.2958	4.14(5)	4.19(5)	2.69(5)	0.580
O6 ⁽³⁾	29.1(1)	142(2)	51.6(1)	61.0(8)	154.5(9)	2.3983	4.64(7)	2.77(7)	0.439
07 ⁽³⁾	59.7(2)	69.3(1)	113.4(2)	140.8(1)	83.4(2)	55.6(1)	2.8091	5.64(6)	0.145
O 8 ⁽³⁾	138(2)	124(3)	109.8 (2)	61.5(1)	126(3)	63(2)	166(3)	2.8706	0.123
Vij									2.755

Tableau 4: Les distances interatomiques (Å) les angles(°) de liaison et les valences électroniques de la phase nouvelle Bi₂SrTeO₇

Te1	O1 ⁽¹⁾	O2 ⁽¹⁾	O3 ⁽¹⁾	O4 ⁽¹⁾	O5 ⁽¹⁾	O6 ⁽¹⁾	Valence
O1 ⁽¹⁾	1.9593	2.625(2)	2.62(3)	3.919(2)	2.91(3)	2.909(1)	0.892
O2 ⁽¹⁾	84.1(1)	1.9593	2.62(2)	2.91(3)	3.92(3)	2.91(3)	0.892
O3 ⁽¹⁾	84.1(1)	180.0(1)	1.9593	2.909(1)	2.91(3)	3.92(2)	0.892
O4 ⁽¹⁾	95.9(1)	95.9(8)	84.1(1)	1.9593	2.625(2)	2.62(3)	0.892
O5 ⁽¹⁾	95.9(1)	180.0(2)	95.9(1)	95.9(8)	1.9593	2.62(2)	0.892
O6 ⁽¹⁾	95.9(1)	180.0(1)	84.1(1)	84.1(1)	84.1(1)	1.9593	0.892
V ij							5.352

Te2	O1 ⁽²⁾	O2 ⁽²⁾	O3 ⁽²⁾	O4 ⁽²⁾	O5 ⁽²⁾	O6 ⁽²⁾	Valence
O1 ⁽²⁾	1.930	2.68(3)	2.682(2)	3.86(2)	2.776(1)	2.78(3)	0.965
O2 ⁽²⁾	88.0(1)	1.930	2.68(2)	2.776(1)	3.86(2)	2.78(2)	0.965
O3 ⁽²⁾	88.0(1)	180.0(1)	1.930	2.78(3)	2.78(2)	3.86(3)	0.965
O4 ⁽²⁾	92.0(7)	92.0(1)	88.0(1)	1.930	2.68(3)	2.682(2)	0.965
O5 ⁽²⁾	92.0(7)	180.0(1)	92.0(1)	92.0(1)	1.930	2.68(2)	0.965
O6 ⁽²⁾	92.0(1)	180.0(2)	88.0(1)	88.0(1)	88.0(1)	1.930	0.965
∑ Vij							5.79

Lors de sa préparation, la phase Bi_2SrTeO_7 subit un gain de poids dû essentiellement à l'oxydation du tellure+4 en tellure+6, ceci est confirmé par le calcul de la valence.

L'atome de tellure Te1 est entouré par six atomes d'oxygène O1 avec une distance Te1-O1 (1.9593Å). La répartition des atomes d'oxygène autour du tellure forme un octaèdre régulier.

2.2 Description de la structure

La structure est formée par un réseau tridimensionnel d'octaèdre $(Te1)O_6$ et d'octaèdre $(Te2)O_6$ qui sont isolés les uns des autres (Figure 3).

Les Tellures Te⁶⁺(1) et Te⁶⁺(2) sont entourés par 6 atomes d'oxygènes O²⁻(1) et O²⁻(2) respectivement formant ainsi des octaèdres réguliers (Figure 4). La succession de ceux-ci forme des tunnels dans lesquels se logent les atomes Bi^{3+}/Sr^{2+} .

Fig.3: La structure cristalline de la nouvelle phase Bi₂SrTeO₇

Fig.4 : Vue des octaèdres (Te1)O₆ (a) et (Te2)O₆ (b)

Fig.5 : Vue des environnements Te1 (a) et Te2 (b)

Fig.6 : Vue de l'environnement de Bi/Sr

5. CONCLUSION

Sur la base de notre investigation, préparation et caractérisation par diffraction de rayons X des compositions au sein du système ternaire Bi_2O_3 -SrO-Te O_2 , il en ressort :

 \checkmark La mise en évidence d'une nouvelle phase Bi₂SrTeO₇ qui cristallise dans le système cubique et présente une particularité

✓ c'est qu'elle possède deux cations, le bismuth Bi^{3+} et le strontium Sr^{2+} qui occupent le même site 24e.

✓ L'étude structurale menée sur cette phase montre qu'elle est formée par un réseau tridimensionnel des octaèdres $Te1[O1]_6$ et $Te2[O2]_6$.

REFERENCES

[1] I. Nishantha, Powder diffraction methods, The Ohio State University (2008).

[2] Programme Full Prof.2k (Version 5.30 - Mar2012-ILL JRC).

[3] M. El Farissi, Caractérisation structurale et propriétés électriques de quelques phases solides du système Bi_2O_3 -TeO₂, Thèse, Université de Limoges, (1982).

[4] A. Affati, Nouveaux matériaux céramiques à base de bismuth et d'antimoine structures et propriétés électriques, Université Mohamed Premier, Thèse, Faculté des Sciences d'Oujda, (1994).

[5] A. Chagraoui, Matériaux cristallisés et amorphes appartenant au système Bi_2O_3 -TeO₂-WO₃, Thèse, Faculté des Sciences Ben M'sik, (1996).

[6] O. Labidi, Relations structures-propriétés dans le système Bi_2O_3 -PbO- V_2O_5 surstructures, polymorphisme, incommensurabilité et conductivité, Thèse, Université des Sciences et Technologie de Lille 1, (2006).

[7] A. Chagraoui, A. Chakib, A. Mandil, A. Tairi, Z. Ramzi, S. Benmokhtar, J. Scripta Materiala, 56, 2, 93, 96, (2007).

[8] A. Mandil, Mémoire DESA, Université Hassan II-Mohammedia, (2005).

[9] A. Chagraoui, A. Mandil, A. Tairi, Z. Ramzi, M. Talibouridah, K. Ajebli, Y. Abboud, Journal of Materials Processing Technology, issue 7, 3111-31116, (2009).

[10] R. D. Shannon, Acta Crystallogr, A32, 751, (1976).