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Abstract 

A mechanistic hydrodynamic model was developed for representation of two-phase, gas-liquid concurrent down-

flow in trickle bed reactors. Starting from the general macroscopic balance equation in a porous media and 

considering some simplifying hypothesis a set of ordinary differential equations was obtained. Gas-Liquid-Solid 

interactions were accounted for according to the relative permeability concept. Furthermore, capillary pressure 

was taken into account using an appropriate correlation available in the literature. Then, the resulting model 

was integrated step by step from the reactor inlet to its outlet, using a numerical method and MATLAB software 

for programming. This model, based on the relative permeability concept, provided the hydrodynamic 

parameters in trickle bed reactors. These parameters were pressure drop, liquid saturation, interstitial gas 

velocity and interstitial liquid velocity. Next, the case of Hexane-Nitrogen-1.52 mm glass spheres system was 

studied and leading to the variations of the above mentioned hydrodynamic parameters inside the bed.  

 

Keywords: mechanistic hydrodynamic model; porous media approach; pressure drop; relative permeability; 

trickle Bed reactor. 

 
 
 
 

I. Introduction 
 

Trickle Bed Reactors (TBRS) are Gas-Liquid-Solid 
contacting devices used in many various fields such 
as petroleum, petrochemical and chemical 
industries, in waste water treatment, in biochemical 
and electrochemical processing, etc. as illustrated 
by the applications reported by Al-Dahhan et al., 
(1997) and Ranade (2011) [1, 2]. 

The external liquid holdup, the pressure drop and 
the flow regime (flow pattern) are important 
hydrodynamic parameters which have to be known 
for the process design of a trickle bed installation. 

First of all, the liquid-phase residence time and the 
degree of wetting of the external catalyst surface 

are both related to the external liquid holdup. 
Second of all, the pressure drop determines energy 
losses: sizing of the compression equipment and 
often gas-liquid mass transfer parameters are 
correlated to it as well as to the external liquid 
holdup. Finally, several flow patterns can be 
observed in the trickle bed reactor: trickle, pulse, 
spray and dispersed bubble flow and information on 
the boundaries between these flow patterns is 
essential because the pressure drop, the liquid 
holdup and especially the mass transfer parameters 
are affected differently in each regime[3, 4]. 

The commercial concurrent trickle-bed reactors 
normally operate adiabatically and with superficial 
gas and liquid velocities of up to 30 and 0.8 cm/s, 
respectively. To increase the concentration of the ga   
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gaseous reactant in the liquid phase, nearly all 
commercial process are performed at elevated 
pressures of up to between 20 and 30 MPa. [5] 

II. The porous media approach 

Trickle bed reactors are considered as multiphase 
mediums, which are constituted of a solid phase 
(porous block) and one or many fluid phases (gas or 
liquids) occupying the void space. In the porous 
media approach, both fluid and solid phases are 
modeled as inter-penetrating continua; as if they co-
existed at every point in the packed bed (see Fig. 1). 

Actually, it is impossible to describe the complex 
geometry of the solid block and the topology of the 
void at the microscopic level. As consequence, 
limit conditions for a mathematical model could not 
be known. In addition, it is extremely difficult to 
measure the state variables at each point of the bed. 
Then, it is necessary to transform the whole 
problem from the microscopic level to the 
macroscopic one. 

First of all, the microscopic balances of extensive 
quantities of fluid phases (mass, momentum and 
energy) were established. The presence of solid was 
implicitly represented by a porosity distribution. 

Next, the averaging of the obtained microscopic 
balances equations was made to obtain macroscopic 
balances equations in terms of averaged 
microscopic quantities, which had measurable 
values. 

Finally, a system of differential equations was 
obtained in terms of variables representing the 
measurable quantities (fluid velocities, saturations 
and pressures). 

III. The general macroscopic 
balance equation in porous 
media 

The mathematical elaborations concerning the 
general macroscopic balance equation in porous 
media may refer the original work reported by 
Kolditz (2002) [6], wherein the following 
expression for an α-phase in porous medium: 

𝜕𝜕𝜀𝜀𝛼𝛼𝜓𝜓𝛼𝛼�����

𝜕𝜕𝜕𝜕
= −∇. �𝜀𝜀𝛼𝛼𝜓𝜓𝛼𝛼����𝑉𝑉𝛼𝛼���� + 𝜀𝜀𝛼𝛼𝜓𝜓′𝛼𝛼����𝑉𝑉 ′𝛼𝛼���� + 𝜀𝜀𝛼𝛼Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝜓𝜓𝛼𝛼�������� −
1

Ω0
∫ Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝜓𝜓𝛼𝛼 .𝑑𝑑𝑑𝑑𝑆𝑆𝛼𝛼𝛼𝛼 − 1
Ω0
∫ 𝜓𝜓𝛼𝛼(𝑉𝑉 −𝑊𝑊).𝑑𝑑𝑑𝑑𝑆𝑆𝛼𝛼𝛼𝛼 +   𝑞𝑞𝜓𝜓𝛼𝛼              

                                                                              (1) 

with: Ω0 Elementary volume of the porous medium 

𝜀𝜀𝛼𝛼 Volumetric fraction of α-phase within the 
elementary volume 

𝜓𝜓𝛼𝛼Extensive quantity (mass, momentum, energy)  

𝑉𝑉𝛼𝛼Velocity of α-phase  

𝜓𝜓′𝛼𝛼Fluctuation of 𝜓𝜓𝛼𝛼  

𝑉𝑉 ′𝛼𝛼Fluctuation of 𝑉𝑉𝛼𝛼 

Φ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝜓𝜓𝛼𝛼 Diffusive flux of quantity 𝜓𝜓𝛼𝛼  

𝑆𝑆𝛼𝛼𝛼𝛼 Interface between α-phase and β-phase, fluid-
fluid interface or fluid-particle interface 

W  Velocity of the interface 

𝑞𝑞𝜓𝜓𝛼𝛼Source of 𝜓𝜓𝛼𝛼  

The bar on the letters means the averaged value of 
the corresponding quantity within the elementary 
volume 

IV. Case of trickle bed reactor 

Fig.1 represents flow in a trickle bed reactor 
according to the porous media approach, illustrating 
how the liquid trickles over the wall of the reactor 
and the gas flows in the remaining void. This image 
represents well the trickle flow regime (low 
interaction regime) at low fluid velocities. It can 
also be seen that solid phase does not appear in the 
picture because it is implicitly represented by a 
porosity distribution. 

 

 

 
A.  Hypothesis and simplifications: 

The following set of hypothesis was considered: 

1- Constant bed porosity (𝜀𝜀 = 𝑐𝑐𝑐𝑐𝑐𝑐) 
2- We consider a smooth and stable interface 

between the gas and the liquid 

3- Flow is considered steady state: 𝜕𝜕𝜀𝜀
𝛼𝛼𝜓𝜓𝛼𝛼�����

𝜕𝜕𝜕𝜕
= 0 

Fig. 1 Schematic representation of TBR according to effective porous 

media approach(Solid is treated as penetrated continuum) 
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4- Plug flow condition is assumed, then the flow 
is one-dimensional in the axial direction, Z 

5- We neglect the turbulence term: 𝜀𝜀𝛼𝛼𝜓𝜓′𝛼𝛼����𝑉𝑉 ′𝛼𝛼���� 
6- No mass transfer  
7- No reaction  
8- Viscous stress forces are neglected 
9- Constant liquid density and ideal gas is 

considered  
 
B.  Mass balance equations 

Putting𝜓𝜓𝛼𝛼 = 𝜌𝜌𝛼𝛼 and according to the precedent 
assumptions, Eq. (1) becomes: 

1
𝑃𝑃
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 1
1−𝜃𝜃

𝑑𝑑(1−𝜃𝜃)
𝑑𝑑𝑑𝑑

+ 1
𝑈𝑈𝐺𝐺

𝑑𝑑𝑈𝑈𝐺𝐺

𝑑𝑑𝑑𝑑
= 0                             (2) 

1
𝜃𝜃
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 1
𝑈𝑈𝐿𝐿

𝑑𝑑𝑈𝑈𝐿𝐿

𝑑𝑑𝑑𝑑
= 0                                                  (3) 

𝜃𝜃: is the liquid saturation, and it is defined as: 

𝜃𝜃 = 𝜀𝜀𝐿𝐿

𝜀𝜀
                                                                   (4) 

C.  Momentum balance equation of α-
phase 

Putting𝜓𝜓𝛼𝛼 = 𝜌𝜌𝛼𝛼𝑉𝑉𝛼𝛼, and according to the 
precedent assumptions, Eq. (1) becomes: 

𝜀𝜀𝛼𝛼𝜌𝜌𝛼𝛼𝑈𝑈𝛼𝛼 𝑑𝑑𝑈𝑈𝛼𝛼

𝑑𝑑𝑑𝑑
= 𝑃𝑃𝛼𝛼 𝑑𝑑𝜀𝜀𝛼𝛼

𝑑𝑑𝑑𝑑
− 𝜀𝜀𝛼𝛼 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝜀𝜀𝛼𝛼𝜌𝜌𝛼𝛼𝑔𝑔 − 𝐹𝐹𝛼𝛼   (5)    

𝛼𝛼 = 𝐺𝐺, 𝐿𝐿 

𝐹𝐹𝛼𝛼 : is the inter-phase coupling term based on the 
relative permeability concept and was introduced 
for the first time by Saez and Carbonell (1985) [7], 
and adopted recently by Atta and al. (2000) [8] as 
discussed below.  

D.  Relative permeability model to account 
for the drag force 𝐹𝐹𝛼𝛼 

There are two approaches for CFD modeling of 
multi phase flows in trickle bed reactors: Fluid-
fluid interaction model and porous media concept. 
Fluid-fluid interaction model, uses inter phase drag 
forces to define the interaction between phases and 
it was well developed in the work of Attou and al. 
(1999) [9]. However, in porous zone the relative 
permeability concept was used to specify the effect 
phases on each other. For a porous medium, relative 
permeability concept seems to be appropriate to 
account for the drag force𝐹𝐹𝛼𝛼, because it is less 
computationally demanding. 

The approach to be used in this work was based on 
the assumption that flow domain (fixed bed with 

catalyst particles) could be described as porous 
media (as illustrated in fig.1)    

The relative permeability concept was first 
proposed by Saez and Carbonell (1985) for 
predicting the two-phase hydrodynamics (pressure 
drops and liquid holdups) of trickle flow in packed 
beds. 

The concept of relative permeability used an 
expression for the drag for single-phase flow, which 
was re-scaled to account for the second phase. This 
parameter, known as the relative permeability was 
defined as the ratio of the drag force per unit 
volume under one-phase flow condition to the drag 
force per unit volume under two-phase flow 
conditions at the same superficial velocity of a 
given phase as expressed by: 

𝑘𝑘𝛼𝛼 = (𝐹𝐹𝛼𝛼 𝜀𝜀𝛼𝛼⁄ )0

(𝐹𝐹𝛼𝛼 𝜀𝜀𝛼𝛼⁄ )
                        (6) 

Using an Ergun-type equation for the single-phase 
pressure drop, the two-phase flow pressure drop 
could be written in the form: 

𝐹𝐹𝛼𝛼

𝜀𝜀𝛼𝛼
= 1

𝑘𝑘𝛼𝛼
[𝐸𝐸1𝜇𝜇

𝛼𝛼(1−𝜀𝜀)2

𝑑𝑑𝑃𝑃
2𝜀𝜀2

𝑉𝑉𝛼𝛼 + 𝐸𝐸2𝜌𝜌𝛼𝛼(1−𝜀𝜀)
𝑑𝑑𝑃𝑃𝜀𝜀3

𝑉𝑉𝛼𝛼2](7) 

Where: 

𝑉𝑉𝛼𝛼: is the superficial velocity of α-phase 

𝜇𝜇𝛼𝛼: is the dynamic viscosity of α-phase 

𝑑𝑑𝑃𝑃: is the equivalent diameter of catalytic solid 
particles  

E1 and E2 are the Blake-Kozeny-Carman and 
Burke-Pulmmer constants, respectively. 

Saez and Carbonell (1985) [7] obtained optimal 
expressions for the gas- and liquid-phase relative 
permeability based on holdup and pressure drop 
data taken from the literature. In the calculations, 
the constants E1 and E2 were set equal to 180 and 
1.8, respectively, as recommended by Macdonald et 
al. (1979) Mentioned in [10].  

Actually, the relative permeability took into account 
the blockage of flow in pores as a result of the 
presence of a second phase. As a result, the relative 
permeability for a given phase considered a 
function only of the fraction of the pore volume 
occupied by that phase, and then their expressions 
were written as functions of the reduced liquid-
phase saturation and the gas-phase saturation: 

(From the phase indicators are written as indices) 

𝑘𝑘𝐿𝐿 = 𝛿𝛿𝐿𝐿2.43                (8) 
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𝑘𝑘𝐺𝐺 = 𝑆𝑆𝐺𝐺4.8                                                             (9) 

𝛿𝛿𝐿𝐿: is the ration of effective volume of flow of 
liquid phase to the available volume of flow 
considering that the static liquid holdup (𝜀𝜀𝐿𝐿0) 
represents a portion of the void fraction occupied 
by stagnant liquid. Thus: 

𝛿𝛿𝐿𝐿 = 𝜀𝜀𝐿𝐿−𝜀𝜀𝐿𝐿
0

𝜀𝜀−𝜀𝜀𝐿𝐿
0                                                            (10) 

𝑆𝑆𝐺𝐺 : is the gas saturation and it is defined as: 

𝑆𝑆𝐺𝐺 = 𝜀𝜀−𝜀𝜀𝐿𝐿
𝜀𝜀

                                                            (11) 

Using the expressions from (8) to (11), the drag 
force expressions for two-phase flow in a trickle 
bed, can then be obtained: 

𝐹𝐹𝐺𝐺
𝜀𝜀𝐺𝐺

= ( 𝜀𝜀
𝜀𝜀−𝜀𝜀𝐿𝐿

)4.8[𝐸𝐸1𝜇𝜇𝐺𝐺(1−𝜀𝜀)2

𝑑𝑑𝑃𝑃
2𝜀𝜀3

𝑉𝑉𝐺𝐺 + 𝐸𝐸2𝜌𝜌𝐺𝐺(1−𝜀𝜀)
𝑑𝑑𝑃𝑃𝜀𝜀3

𝑉𝑉𝐺𝐺2]       12) 

𝐹𝐹𝐿𝐿
𝜀𝜀𝐿𝐿

= ( 𝜀𝜀−𝜀𝜀𝐿𝐿
0

𝜀𝜀𝐿𝐿−𝜀𝜀𝐿𝐿
0)2.43 �𝐸𝐸1𝜇𝜇𝐿𝐿(1−𝜀𝜀)2

𝑑𝑑𝑃𝑃
2𝜀𝜀3

𝑉𝑉𝐿𝐿 + 𝐸𝐸2𝜌𝜌𝐿𝐿(1−𝜀𝜀)
𝑑𝑑𝑃𝑃𝜀𝜀3

𝑉𝑉𝐿𝐿2�   (13) 

The static liquid holdup (𝜀𝜀𝐿𝐿0) can be calculated by 
the following correlation given by Saez and 
Carbonell (1985) [7]: 

𝜀𝜀𝐿𝐿0 = 1
(20+0.9𝐸𝐸𝐸𝐸∗)

                                                 (14a) 

Where 

𝐸𝐸𝐸𝐸∗ = 𝜌𝜌𝐿𝐿𝑔𝑔𝑑𝑑𝑃𝑃
2𝜀𝜀2

𝜎𝜎𝐿𝐿(1−𝜀𝜀)2
                                                  (14b) 

𝐸𝐸𝐸𝐸∗: is the Eötvös number, and it indicates the 
effect of surface tension on the liquid flow inside 
the bed.  

E. The final form of the mathematical 
model 

The final mathematical model describing the trickle 
flow regime in trickle bed reactor based on the 
effective porous medium approach (relative 
permeability concept) is represented by the 
differential equations system (15): 

1
𝑃𝑃
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
1

1 − 𝜃𝜃
𝑑𝑑(1 − 𝜃𝜃)

𝑑𝑑𝑑𝑑
+

1
𝑈𝑈𝐺𝐺

𝑑𝑑𝑈𝑈𝐺𝐺
𝑑𝑑𝑑𝑑

= 0 

1
𝜃𝜃
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
1
𝑈𝑈𝐿𝐿
𝑑𝑑𝑈𝑈𝐿𝐿
𝑑𝑑𝑑𝑑

= 0 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �
𝑃𝑃

1 − 𝜃𝜃
� (
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

) − (𝑃𝑃 𝑅𝑅𝑅𝑅⁄ )𝑈𝑈𝐺𝐺
𝑑𝑑𝑈𝑈𝐺𝐺
𝑑𝑑𝑑𝑑

− (
1

1 − 𝜃𝜃
)4.8 �

𝐸𝐸1𝜇𝜇𝐺𝐺(1 − 𝜀𝜀)2

𝑑𝑑𝑃𝑃2𝜀𝜀3
𝑉𝑉𝐺𝐺

+
𝐸𝐸2(𝑃𝑃 𝑅𝑅𝑅𝑅⁄ )(1 − 𝜀𝜀)

𝑑𝑑𝑃𝑃𝜀𝜀3
𝑉𝑉𝐺𝐺2�

+ (𝑃𝑃 𝑅𝑅𝑅𝑅⁄ )𝑔𝑔 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −�𝑃𝑃−𝑃𝑃𝑐𝑐
𝜃𝜃
� �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� − 𝜌𝜌𝐿𝐿𝑈𝑈𝐿𝐿

𝑑𝑑𝑈𝑈𝐿𝐿
𝑑𝑑𝑑𝑑

−

�1−θ0

𝜃𝜃−𝜃𝜃0
�
2.43

�𝐸𝐸1𝜇𝜇𝐿𝐿(1−𝜀𝜀)2

𝑑𝑑𝑃𝑃
2𝜀𝜀3

𝑉𝑉𝐿𝐿 + 𝐸𝐸2𝜌𝜌𝐿𝐿(1−𝜀𝜀)
𝑑𝑑𝑃𝑃𝜀𝜀3

𝑉𝑉𝐿𝐿2� +

          𝜌𝜌𝐿𝐿𝑔𝑔                                                             (15) 

Such that 𝜃𝜃0is the static liquid saturation, and is 
defined by the following expression  

𝜃𝜃0 = 𝜀𝜀𝐿𝐿
0

𝜀𝜀
                                                                (16)  

and 𝑃𝑃𝑐𝑐is the capillary pressure which is calculated 
by the correlation proposed by Attou and 
Freschneider (2000) [11] (see Appendix) 

The system of equations (15) is a set of four 
differential equations, and it contains four unknown 
variables, which are: 

𝑃𝑃: is the gas pressure 

𝜃𝜃 : is the liquid saturation 

𝑈𝑈𝐺𝐺: is the gas interstitial velocity  

𝑈𝑈𝐿𝐿: is the liquid interstitial velocity 

For a given operating conditions (fluids superficial 
velocities, operating pressure, operating 
temperature), fluids properties (densities, viscosities 
and liquid surface tension) and packing 
characteristics (particle diameter, and bed porosity), 
this model is integrated step by step starting from 
the inlet up to the outlet of the trickle bed reactors 
by means of the fourth order Runge-Kutta 
algorithm. 

 

V. Simulation of the model 

By resolving the equations set (15), the variation of 
gas pressure, fluid interstitial velocities and liquid 
saturation along the bed might be obtained. Herein 
after, simulations based on the model were 
performed with the following operating conditions, 
fluid properties and packed bed characteristics: 

a- Operating conditions: 
- Liquid superficial velocity: VL=0.085 m.s-

1 
- Gas superficial velocity: VG=0.01 m.s-1 



 
 

M. Lakkaichi et al., Algerian Journal of Engineering Research N° 2, December 2017 

49 
 

- Pressure: P=0.31 MPa 
- Temperature: T=298 K 
b- Fluid properties [12]: 
- Hexane 

(𝜌𝜌𝐿𝐿 = 663 𝑘𝑘𝑘𝑘.𝑚𝑚−3, 𝜇𝜇𝐿𝐿 = 3.07. 10−4𝑃𝑃𝑃𝑃. 𝑠𝑠,
𝜎𝜎𝐿𝐿 = 17.89 𝑚𝑚𝑚𝑚.𝑚𝑚−1) 

 
- Nitrogen 

(𝜌𝜌𝐺𝐺 = 𝑃𝑃
𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘.𝑚𝑚−3, 𝜇𝜇𝐺𝐺 = 1.78. 10−5𝑃𝑃𝑃𝑃. 𝑠𝑠,

𝑅𝑅 = 296.73 𝐽𝐽. 𝑘𝑘𝑘𝑘−1.𝐾𝐾−1) 

The liquid dynamic viscosity is inversely 
dependent to its density. As the liquid density 
was supposed to be constant, then its dynamic 
viscosity was assumed to be constant. For ideal 
gas, the dynamic viscosity is independent to 
pressure. ([13], [14]) 

c- Bed characteristics: 
- Porosity: 𝜀𝜀 = 0.412 
- Particle equivalent diameter: 𝑑𝑑𝑃𝑃 =

1.52 𝑚𝑚𝑚𝑚 
- Bed length: 𝐿𝐿 = 51.61 𝑐𝑐𝑐𝑐 

 
A. Limit conditions: 

It was considered that at the inlet of the bed that the 
velocities profile and the liquid saturation were flat 
i.e. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑈𝑈𝐺𝐺
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑈𝑈𝐿𝐿
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0                                   (17)    

By replacing expressions (17) in the equations set 
(15), the following algebraic equation with one 
variable (𝜃𝜃𝜃𝜃) was obtained: 

( 1
1−𝜃𝜃𝜃𝜃

)4.8 �𝐸𝐸1𝜇𝜇𝐺𝐺(1−𝜀𝜀)2

𝑑𝑑𝑃𝑃
2𝜀𝜀3

𝑉𝑉𝐺𝐺 + 𝐸𝐸2(𝑃𝑃 𝑅𝑅𝑅𝑅⁄ )(1−𝜀𝜀)
𝑑𝑑𝑃𝑃𝜀𝜀3

𝑉𝑉𝐺𝐺2� +

(𝑃𝑃 𝑅𝑅𝑅𝑅⁄ )𝑔𝑔 = ( 1−θ0

𝜃𝜃𝜃𝜃−𝜃𝜃0
)2.43 �𝐸𝐸1𝜇𝜇𝐿𝐿(1−𝜀𝜀)2

𝑑𝑑𝑃𝑃
2𝜀𝜀3

𝑉𝑉𝐿𝐿 +
𝐸𝐸2𝜌𝜌𝐿𝐿(1−𝜀𝜀)

𝑑𝑑𝑃𝑃𝜀𝜀3
𝑉𝑉𝐿𝐿2� + 𝜌𝜌𝐿𝐿𝑔𝑔                                             (18)                 

𝜃𝜃𝜃𝜃: is the liquid saturation at the bed inlet 

The algorithm of Newton-Raphson was used to 
solve Eq. (18) and the inlet liquid saturation might 
be obtained: 

Inlet liquid saturation:  𝜃𝜃𝜃𝜃 =  0.7867 

Then, the use of the definitions of interstitial liquid 
and gas velocity inside the bed led to the  following 
numerical data: 

Inlet liquid interstitial velocity: VL0=VL/(𝜃𝜃R0𝜀𝜀)= 
0.2622 m/sec 

Inlet gas interstitial velocity: VG0=VG/(𝜀𝜀(1-𝜃𝜃R0))= 
0.1138 m/sec 

Finally, the inlet pressure was set to be the 
following: 

Inlet Pressure: P0=310000 Pa 

B. Results: 

The following graphs show the evolution of gas 
pressure, liquid saturation, liquid interstitial 
velocity and gas interstitial velocity along the bed. 

 

Fig. 2 illustrates the pressure variation along the 
bed, it can be seen clearly that the pressure drop 
was equal to 4.9704e+04Pa. Actually, the pressure 
drop is a lost energy from the fluids internal energy 
due to flow resistance because of the trickle bed 
reactor topology. 
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Figure 2. Pressure variation along the bed 

Figure3. Liquid saturation variation along the bed 
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Fig. 3 illustrates the liquid saturation variation 
along the bed, it can be seen clearly that the liquid 
saturation was increasing along the bed. In fact, 
capillary pressure presented an additional resistance 
for liquid flow, so that liquid tended to be 
accumulated inside the bed and this was represented 
by an increase in liquid fraction going down in the 
bed. 

 
 

Fig. 4 shows that the interstitial liquid velocity was 
decreasing along the bed. Here also, for the case of 
the interstitial liquid velocity, the capillary pressure 
effect appeared. The additional resistance due the 
capillary effect, curbed the liquid flow, thus a 
decreasing in liquid velocity inside the bed was 
observed. Truly, an opposite effect on liquid 
saturation was observed. 

 
 

Fig. 5 presents an increasing profile of the gas 
interstitial velocity along the bed. Really, a decrease 
of gas pressure, due to the pressure drop, 
thermodynamically, leads to an increase of its flow 
rate 

VI. Conclusions: 

A 1D-model was developed describing flow inside 
trickle bed reactors. A systematic approach was 
adopted to establish the model, starting from the 
general balance equation in porous media and 
relying on a set of hypothesis, the mass balance and 
momentum balance equations for a trickle bed 
reactor were derived. Closure relationships for 
capillary pressure and drag forces were needed. The 
model was integrated step by step from the reactor 
inlet to its outlet and the hydrodynamic parameters 
profiles along the bed were plotted. 

This model predicted the pressure drop and liquid 
distribution inside the bed which are key 
hydrodynamic parameters for trickle bed reactor 
design. 

A one step is remaining to adopt this model, is to 
study its validity by comparing simulated results 
with experimental data. Whether the developed 
model gives precise results or not, it represents a 
fundamental and a comprehensive approach for 
trickle bed hydrodynamic modeling. 
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List of symbols 

𝒅𝒅𝑷𝑷 Equivalent diameter of catalytic solid particles 

E1 and E2 Blake-Kozeny-Carman and Burke-
Pulmmer constants, respectively. 

𝑭𝑭𝜶𝜶 Resultant forces acting on α-phase  

g Gravitational force 

G Gas phase 

H Bed length 

𝒌𝒌𝜶𝜶Relative permeability of α-phase 

L Liquid phase 

P Pressure, Pa 

𝑷𝑷𝒄𝒄 Capillary pressure, Pa 

R Relative ideal gas constant, J. kg−1. k−1 
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Figure 4. Interstitial liquid velocity variation along the bed 

Figure5. Interstitial gas velocity variation along the bed 
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S Solid phase 

𝑺𝑺𝜶𝜶𝜶𝜶 Interface between α-phase and β-phase, fluid-
fluid interface or fluid-particle interface 

𝑺𝑺𝜶𝜶α-phase saturation  

T Temperature, k 

𝑽𝑽𝜶𝜶Velocity of α-phase  

𝑽𝑽′𝜶𝜶Fluctuation of 𝑉𝑉𝛼𝛼 

𝑽𝑽𝜶𝜶Superficial velocity of α-phase 

𝑼𝑼𝜶𝜶α-phase interstitial velocity 

W Velocity of the interface 

𝒒𝒒𝝍𝝍𝜶𝜶Source of 𝜓𝜓𝛼𝛼  

Greek letters 

𝜺𝜺: Bed porosity 

𝜺𝜺𝜶𝜶 Volumetric fraction of α-phase within the 
elementary volume 

𝜺𝜺𝑳𝑳𝟎𝟎 Static liquid holdup 

𝑬𝑬𝑬𝑬∗Eötvös number 

𝛀𝛀𝟎𝟎 Elementary volume of the porous medium 

𝜽𝜽: is the liquid saturation 

𝜽𝜽𝟎𝟎 Static liquid saturation 

𝚽𝚽𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃
𝛙𝛙𝛂𝛂 Diffusive flux of quantity 𝜓𝜓𝛼𝛼  

𝝍𝝍𝜶𝜶Extensive quantity (mass, momentum, energy)  

𝚽𝚽𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫
𝝍𝝍𝜶𝜶 Diffusive flux of quantity 𝜓𝜓𝛼𝛼  

𝝆𝝆𝜶𝜶α-phase density 

𝜺𝜺𝑮𝑮 Volumetric fraction of gas-phase 

𝜺𝜺𝑳𝑳 Volumetric fraction of liquid-phase 

𝝁𝝁𝜶𝜶 Dynamic viscosity of α-phase 

𝝈𝝈𝑳𝑳Liquid surface tension 

Subscripts 

𝜶𝜶Gas/liquid phase 

𝑮𝑮Gas phase 

𝑳𝑳Liquid phase 

0Inlet condition 

Superscripts 

𝜶𝜶Gas/liquid phase 

𝑮𝑮Gas phase 

𝑳𝑳Liquid phase 
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Appendix 

Capillary pressure correlation (correlation of 
Attou and freschneider (2000)) 

The capillary pressure is defined as: 

𝑃𝑃𝑐𝑐 = 𝑃𝑃 − 𝑃𝑃𝐿𝐿  

Where: 

P=PG: is the gas pressure 

PL: is the liquid pressure 

𝑃𝑃𝑐𝑐 = 2𝜎𝜎 � 1−𝜀𝜀
1−𝜀𝜀𝐺𝐺

�
1 3⁄

� 1
𝑑𝑑𝑃𝑃

+ 1
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

� 𝐹𝐹(𝜌𝜌𝐺𝐺
𝜌𝜌𝐿𝐿

)                 

Where  

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = (
√3
𝜋𝜋
−

1
2

)1 2⁄ 𝑑𝑑𝑃𝑃 

And                                        

𝐹𝐹 �𝜌𝜌𝐺𝐺
𝜌𝜌𝐿𝐿
� = 1 + 1.88 �𝜌𝜌𝐺𝐺

𝜌𝜌𝐿𝐿
�, for  𝜌𝜌𝐺𝐺

𝜌𝜌𝐿𝐿
< 0.025 

 

 


