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Abstract  

Optimum design of isolated units or fields of heliostats is depend upon obtaining realistic design of wind loads, gravity loads and 

thermal stresses. The stationary and dynamic effects of wind will be an important factor for heliostats. Some experts have conducted a 

series of field measurements and wind tunnel tests for determining different wind load configurations on heliostats. A monitoring program 

covered six-year period from 1986 to 1992 which focused on the issues of heliostat beam quality, mirror module performance and 

durability, tracking accuracy, dynamic wind effects, and overall operational and maintenance characteristics. The present work is a 

simplified method of estimating the deformation of heliostat due to gravity loads and thermal stresses and static wind loads by establishing 

a mathematical model of different loads affecting the deformation of heliostat reflective surface modules. 
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1. Introduction 

By making an inventory of the development of 

heliostats and their market listing in the future with their 

specific weight and cost, respectively, the development will 

be from rigid and heavy construction towards lightweight 

construction and low cost. Currently, two configurations 

seem beings heliostats cheap solutions (Fig.1), (a) 

rectangular heliostat (e.g. GM-100) and (b) circular 

stretched membrane heliostat (e.g. ASM-150). Similar 

prototypes configurations of heliostats were tested, but it is 

too early to say what the best solution [1].  

Reducing the specific cost of the heliostat by simplifying 

the supporting structure, reducing its weight and move 

towards the larger sizes of heliostats has a contradictory 

effect on the quality of the reflected sun rays image [3]. 

 

a: GM-100              b: ASM-150 

Fig.1: Heliostats [2] 
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Fig.2: Heliostats solar power tower field [2] 

Increasing the pointing error or the error of the reflected 

image of an entire heliostat field (Fig.2) also augment the 

production cost of the plant turn. In order to check the 

optical performance of the heliostat, it is necessary to know 

the sources of error and then quantify them. 

2. Error source: 

On a reflecting surface, the reflectance of the normal 

angle of any point is equal to the angle of incidence. 

However, in the applications of concentrating solar systems, 

the direction of the normal of the solar concentrator 

(heliostat) surface is not always exactly known. The normal 

of the surface of a heliostat facet at a given point deviates 

from its ideal position because of several parameters: 

undulations of the surface of the facets, errors of 

orientations due from oscillations and by structural 

deformation due from gravitational loads, wind loads and 

influence of temperature. The reflected rays are shifted 

from central ray (pointing error) or, in the case where the 

entire hub is misaligned; the central beam is reflected at 

various points (tracking error) [4]. The total dispersion error 

of the reflected beam distribution can be written as: 

2 2 2 2
.total sun aber BQ                    (1) 

where: sum is the sun shape error, aber is the optical 

aberration error of heliostat facets and BQ is the beam 

quality error of the reflected sun rays. The required value of 

BQ  is 2 to 2.6 mrad. 

The optical errors contribution in the dispersion of the 

reflected beam can be written as follows:  

2 2 2 2 2
. . . ..BQ ondul ocsil cg temp                 (2) 

The deterioration of the reflected beam quality due to 

gravity loads and temperature effect will be the subject of 

this study by the determination of the mathematical model 

deformation of the heliostat reflecting surface.  

3. Heliostat geometry: 

In order to estimate the deformations of heliostat 

reflective surface, we will study a significant size heliostat. 

  

Fig.3: A 105 m2 heliostat 

The Net reflection surface of the heliostat (Fig.3) is 105 m2 

composed by 32 facets of 1.1x3 m supported by 08 trusses 

of 9 m length, all mounted on a torque tube of 12.4 m in 

length and with a diameter of 0.4 m, this assembly is 

mounted on the azimuth and elevation drive mechanism in 
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the central portion of the torque tube. All these components 

are rigidly fixed on a support pedestal with 04 m in length 

and a diameter of 0.61 m. 

4. Mathematical model: 

To describe mathematically the behavior of the 

heliostat reflective surface deformation, some basic 

definitions are useful. The coordinates system used in this 

model has its origin in the center (reflective surface). 

(Fig.4) 

 

Fig.4: Coordinates system of heliostat 

 

The elevation angle is called (elev.) and equal to zero when 

the facets are in the vertical position. The azimuth angle is 

zero when the heliostat is directed to the south, positive in 

east and negative in west. The calculation of heliostat 

reflective surface deformation with very complex 

geometries requires very powerful simulation tools, 

however, it is possible to simplify the calculations by 

isolating the components of the heliostat one by one (by 

applying the different loads such as: gravity loads, 

temperature, ...). This method allows us to estimate the 

deformation due to different loads (gravity, temperature...) 

and in the end linearly superposed [5].   

4.1. Gravity loads: 

4.1.1. Gravity loads on the support pedestal: 

The simplified geometry of the pedestal can be seen in 

(Fig. 5). It consists of a 4 000 mm long (Lped) steel tube with 

an outer  diameter  Dped of 600 mm  and a  thickness 

tped of 16 mm. it is rigidly mounted on a concrete 

foundation. On a top of the pedestal is the elevation drive 

that moves the torque tube with the help of a lever of the 

length e. The weight of facets, trusses and torque tube 

induce the force Fconc. 

( ).conc facets trusses tubeF m m m g              (3) 

This force causes the moment: 

, . .cos( 60 )b ped concM F e elev                  (4) 

The additional angle of 60° comes from the mounting 

geometry (Fig.5). The moment Mb,ped changes with the 

elevation angle and has the same value over the whole 

length of the pedestal. This causes the tube to tilt forward 

about the angle. 

, .

.

b ped pedM L
elev

E I
                          (5) 

with E: Young’s modulus and I the Moment of inertia. The 

resulting Z-displacement of the mirror plane is: 

, ( ) .ped gz x elev x                         (6) 

 

Fig.5: Pedestal geometry 
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4.1.2. Gravity loads on the torque tube: 

4.1.2.1. Bending: 

The simplified model of the torque tube is shown in 

(Fig.6). Its geometry and loads are supposed symmetrical. 

There is an inner moment Mb,tube in the cutting plane that 

needs to be considered in order to satisfy the equilibrium of 

forces and moments. The boundary conditions of the tube 

given mathematically are z’(0)=0 and z(0)=0 per definition 

of the coordinate system. The steel tube has a thickness of 

ttube=16 mm, an outer diameter of Dtube=406 mm and its half 

length Ltube/2=6200mm. The support is in the distance of 

lbending=500 mm and the trusses are mounted in the distances 

l1 to l4.   

 

Fig.6: Simplified model of one side of torque tube 

The weight of the facets and the trusses induce the forces: 

4 1( ).truss facets trussF m m g                    (7) 

While the weight of the tube itself is modeled as the area 

load qtube: 

. .tube tube steelq A g                       (8) 

From the equilibrium of forces it is known that the reaction 

force in the bearing is: 

(4. . )
2

tube
bearing truss tube

L
F F q                 (9) 

From the equilibrium of moments results the inner moment 

2

, 1 2 3 4

( / 2) .
.( ) .

2

tube tube
b tube truss bearing bearing

L q
M F l l l l F l      

            (10) 

The equation of the bending line of the torque tube is: 

 

        

3, 2

33 3 3 4
1 2 3 4

.
1 2 6 6( ) .
.

24

bearingb tube truss
bearing

tube

FM F
x x l

w x
E I q

x l x l x l x l x

 
   

  
 

        
 

 

  (11)  

The displacements in z-direction of the facets are 

independent of the distance from the tube (y), but depend 

on the distance in x-direction and elevation angle: 

. , ( ) sin( ). ( )tube bending gz x elev w x                (12)  

4.1.2.2. Torque: 

The center of gravity of the concentrator is not located 

in the axis of the tube, but at the distance a from the axis. 

The facets are mounted close to tangential to the torque 

tube, hence the distance a is supposed to be the radius of the 

torque tube. 

4 . . cos( )truss facetsM m g a elev                     (13) 

By calculating the twisting angle φ of the torque tube in the 

distance x: 

, , ( , ) sin( ( )).tube torque gz x y x y                (14) 

4.1.3. Gravity loads on the trusses: 

The trusses form plane frames as shown in (Fig.7). 

The weight of the facets and the trusses themselves are 

added up to a single area load qtruss that acts over the whole 

length. 

1truss
truss

truss

m
q

L
                                 (15) 

The structure is fixed to the torque tube that is assumed to 

be ideally rigid. 
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Fig.7: Simplified model of the truss 

The forces, stresses and deformations of all the bars can be 

calculated by the equations of pin-jointed frames [7]. Once 

the deformations of the bars are known, the deformation of 

the whole truss can be determined.  

3 2
, (0.0095. 0.1288. 0.0404 ).sin( )truss gz x x x elev     

  (16) 

4.2. Temperature influence: 

The changing ambient temperature does not affect the 

shape of the support structure, whereas the spatial 

temperature gradient due to solar insolation does. All parts 

facing the sun will heat up while the parts in the shade stay 

cooler. The resulting temperature differences make the front 

side expand more than the backside and hence the structure 

bends out of shape [1], [6]. The only parts of the GM-100 

support structure that are exposed to direct sunlight are the 

pedestal and the torque tube. Therefore it is sufficient to 

find a model for bending of tubes as shown in (Fig.8). 

 

 

Fig.8: Bending of a tube due to a temperature gradient 

 

The warmer side expands about the length ΔLped while the 

cool side keeps its temperature and length . 

. .ped pedL L t                              (17) 

with α: temperature coefficient of steel. This causes the tube 

to bend in an arc with radius R and the resulting tilting 

angle Δelev in radians is: 

ped ped

elev
ped

L L

R D


                           (18) 

The corresponding deformation in z-direction is: 

, ( ) .ped tz x elev x                           (19) 

The bending of the torque tube due to the temperature 

gradient contributes towards the same direction as the 

bending due to gravity. Equation (20) shows the 

displacement of the facets in z-direction: 

,

.(1 . )
( , )tube t

torquetube

x t
z x t

D


                      (20) 

4.3. Superimposed deformations of reflective surface of 

the heliostat: 

The deformation of the heliostat as a whole is the sum 

of all the before derived deformations. As the deformations 

do not influence each other, the equations can be linearly 

superimposed as follows: 

, , , , , ,

, ,

¨

( , , , , )ped tube

ped g tube bending g tube torque g truss g

gravitation

ped t tube t

temperature

z x y elev t t

z z z z

z z

  

      

  

 

…….                                        (21) 

Finally, with all the values put in, the deformation of the 

concentrator plane from the original shape (z=0) is obtained 

(equation 22). In order to simplify the equation, polynoms 

of up to third order were used as approximations for all the 

equations except for the analytical solutions for the 

pedestal. The units of the x- and y-values are meters, the 
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elevation is in radians, the temperature difference in Kelvin 

and the unit of the z-direction is millimeters. 

3 2

3 2

2

( , , , , ) 0.459.cos( 60 ).

(0.028. 0.4178. 0.0572. ).sin( )

0.0309. .cos( ).

(0.0095. 0.1288. 0.0404. ).sin( )

0.08. .

0.0148. .

ped tube

ped

tube

z x y elev t t elev x

y y y elev

y elev x

x x x elev

t x

t y

     

  



  

 

 

 

………                                      (22) 

A Matlab program was done to calculate the deformation of 

reflective surface of the heliostat with a fixed elevation 

angle and temperature difference. 

5. Results and discussion: 

In (Fig.9), the heliostat takes vertical position with 

elev. = 0. In comparing the deformation of the heliostat 

when elev. = 90 ° (Fig.10), we note that the deformations 

are more important in this case since gravitational loads 

increase with increasing the elevation angle and 

deformation take a symmetrical shape . The deformation of 

the reflective surface of the heliostat due to temperature is 

of the order of a few millimeters which do not considerably 

affect the performance of the heliostat 

 

     

Fig.9: Heliostat deformation (elev.=0°)        Fig.10: Heliostat deformation (elev.=90°) 

6. Conclusion: 

From the results obtained, it is clear that several 

parameters influence the heliostat deformation due to 

gravitational loads. It remains to introduce for future work 

dynamic wind loads that are predominant in the design of 

heliostats. The components of the heliostat which 

accentuate the change in shape of the reflecting surface of 

the heliostat are the support tube and trusses.  It is 

therefore necessary to change the shapes of these two 

components without increasing weight or reduce their 

weight using composite materials. 
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