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Abstract 

Thermal buckling analysis of rectangular sigmoid functionally graded plates (S-FGPs) is investigated using first-order shear deformation 

theory. The sigmoid functionally graded material (S-FGM) system consists of ceramic (Al2O3) and metal (Al) phases varying through the 

thickness of plate according to a two power-law distribution. Material properties and thermal expansion coefficient of the plate are assumed 

to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. 

The thermal loads are assumed to be uniform and sinusoidal distribution through-the-thickness. Numerical examples cover the effects of 

the gradient index, plate aspect ratio, side-to-thickness ratio and loading type on the critical buckling for S-FGM plates.    

Keywords: S-FGM plate; Al/Al2O3; Buckling; Material gradient index.  

1. Introduction 

Functionally graded materials (FGMs) are special 

composites whose material properties vary continuously 

through their thickness. FGMs are usually made of mixture 

of ceramic and metal, and can thus resist high-temperature 

environments while maintaining toughness. The technology 

of FGMs was an original material fabrication technology 

proposed in Japan in 1984 by Sendai Group. FGMs are 

used in very different applications, such as reactor vessels, 

fusion energy devices, biomedical sectors, aircrafts, space 

vehicles, defense industries and other engineering 

structures. With the increased use of these materials for 

structural components in many engineering applications, 

the study of static, dynamic and stability behaviors of these 

components gains importance among researchers [1–8]. 

Sallai et al. [1] investigated the static responses of a 

sigmoid FGM thick beam by using different beam theories. 

Merdaci et al. [2] developed two refined displacement 

models for a bending analysis of functionally graded 

sandwich plates and the number of unknown functions 

involved is only four, as against five in case of other shear 

deformation theories. Mechab et al. [3] proposed the two 

variable refined plate theory. In this paper, equilibrium and 

stability equations of a rectangular plate made of sigmoid 

functionally graded materials under thermal loads are 

derived based on the first order shear deformation theory.  

The S-FGM system consists of ceramic (Al2O3) and metal 

(Al) phases varying through the thickness of plate, 

according to the volume fraction of the constituent 

materials based on the sigmoid functions. The thermal 

loads are assumed to be uniform and sinusoidal temperature 

rises across the thickness direction are analyzed. The 

influence of aspect and thickness ratios, gradient index and 

the transverse shear on buckling temperature difference are 

all studied. 

2.  Material properties of S-FGM plates 

Consider a rectangular plate made of a mixture of metal 

and ceramic as shown in Figure 1.  

 

 

 

 

 

 

 

 

Fig 1 .Configuration and coordinate system of a rectangular plate. 

 

 

Nature & Technology   

Submitted on  : 15 April 2011 

Revised form accepted on : 06 April 2012 

Corresponding author email :  

afekrar@yahoo.fr 



« Nature &  Technology » Journal. A- Fundamental & Engineering Sciences, Issue n° 08/January 2013 

 

13 

-0,5 -0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5

0,0

0,2

0,4

0,6

0,8

1,0

V
ar

ia
ti

o
n

 o
f 

v
o
lu

m
e 

fr
ac

ti
o

n
 

z/h

 k=1

 k=2

 k=5

 k=10

 k=0.1

 k=0.2

 k=0.5

In the case of adding an FGM of a single power-law 

function to the multi-layered composite, stress 

concentrations appear on one of the interfaces where the 

material is continuous but changes rapidly [21, 22]. 

Therefore, Chung and Chi [19] and Sallai et al. [1] defined 

the volume fraction using two power-law functions to 

ensure smooth distribution of stresses among all the 

interfaces. The two power-law functions are defined by: 
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Where k  is the material gradient index. 

By using the rule of mixture, the Young’s modulus E  and 

the coefficient of thermal expansion  of the S-FGM can 

be calculated by: 
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Where mE and m  denote the elastic moduli and the 

coefficient of thermal expansion of metal respectively; 

cE and c denote the elastic moduli and the coefficient of 

thermal expansion of ceramic respectively. We note that: 

mccm EEE   and mccm    

 

Figure 2 shows the volume fraction distribution of ceramic 

phase through the thickness for several values of the power 

law index. The variation of the composition of ceramics 

and metal is linear for 1k . The volume fraction rapidly 

changes near the top and bottom surfaces for 1k  but 

vary quickly near the middle surface for 1k . Therefore, if 

the S-FGM plate is used as the undercoat in a laminated 

material, the material distribution with 1k  is the better 

choice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Variation of the volume fraction through the thickness  

of an S-FGM plate with differing material gradient index k . 

3. Analysis 

The S-FGM plate is assumed simply supported in 

bending and rigidly fixed in extension. The temperature 

change is varied only in the thickness direction. Assume 

that wvu ,,  denote the displacements of the neutral plane 

of the plate in x, y, z directions respectively; yx  ,  

denote the rotations of the normals to the plate midplane. 

According to the first order shear deformation theory, the 

strains of the plate can be expressed as 
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Hooke’s law for a plate is defined as 
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The forces and moments per unit length of the plate 

expressed in terms of the stress components through the 

thickness are 
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Substituting Eqs. (2), (3), and (4) into Eqs. (5), gives the 

constitutive relations as 
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The nonlinear equations of equilibrium according to Von 

Karman’s theory are given by 
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Using Eqs. (6) and (8) and by eliminating the 

variables yxvu  ,,, , the equations of equilibrium can be 

covered into one equation as 
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To establish the stability equations, the critical equilibrium 

method is used. Assuming that the state of stable 

equilibrium of a general plate under thermal load may be 

designated by 0w . The displacement of the neighboring 

state is 10 ww  , where 1w  is an arbitrarily small increment 

of displacement. Substituting 10 ww   into Eq. (9) and 

subtracting the original equation, results in the following 

stability equation 
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Where, 000 , xyyx NandNN  refer to the pre-buckling 

force resultants. 

3.1. Buckling of S-FGM plates under uniform temperature 

rise 

To determine the buckling temperature difference crT , 

the pre-buckling thermal forces should be found firstly. 

Solving the membrane form of equilibrium equations, gives 

the pre-buckling force resultants 
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Substituting Eq. (11) into Eq. (10), one obtains 
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If the transverse shear deformation is not considered, Eq. 

(12) can be reduced as 
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The simply supported boundary condition is defined as 
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The following approximate solution is seen to satisfy both 

the governing equation and the boundary conditions 
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Where m , n  are number of half waves in the x and y 

directions, respectively, and c  is a constant coefficient. 
 

Substituting Eq. (15) into Eq. (13), and substituting for the 

thermal parameter   from Eq. (7), yields 
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  and  baBa /  

The critical temperature difference is obtained for the 

values of m, n that make the preceding expression a 

minimum. Apparently, when minimization methods are 

used, critical temperature difference is obtained for the 

fundamental mode 1 nm [5-6-8], thus 
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3.2.  Buckling of S-FGM plates under sinusoidal 

temperature change 

The temperature rise under sinusoidal temperature 

distribution across the thickness is assumed as  
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For this loading case, the thermal parameter   can be 

expressed as 
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From Eq.(20) one has 
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When the approximate solution (15) is substituted into Eq. 

(12), and the definition of parameter   from Eq. (7) are 

used, the expression for thermal buckling of the plate is 

obtained. Taking 1 nm , the critical buckling 

temperature is expressed as 
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4.  Results and discussion 

The thermal buckling analysis is conducted for 

combinations of metal and ceramic. The set of materials 

chosen is Aluminum and Alumina. For simplicity, 

Poisson’s ratio of the two materials is assigned the same 

value. Typical values for metal and ceramics used in the S-

FGM plate are listed in Table 1. 

 

Table1 

Material properties used in the S-FGM plate 

Properties Metal: Al Ceramic: Al2O3 

E (GPa) 70 380 

  0.3 0.3 

  (10-6/°C) 23   7.4 

 

Firstly, the critical temperature differences are calculated 

for sigmoid functionally graded plates under uniform 

temperature and sinusoidal temperature change, 

respectively. The obtained results are plotted in Figure 3 

and they show the critical buckling temperature difference 

crT vs. the thickness to span ratio ah /  where the 

material gradient index k  is equal to 2 and 1/ ba . It is 

seen that the critical temperature difference increases 

monotonically as the relative thickness ah /  increases. The 

values of the critical temperature differences calculated by 

using the first order shear deformation theory are lower 

than those calculated by using the classical plate theory. 

This means that the inclusion of effect of transverse shear 

deformation leads to a reduction in the critical buckling 

temperature difference, especially for thick plates.   
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Fig3. Critical buckling temperature of S-FGM plate vs. relative thickness 

of the plate: (a) under uniform temperature change; (b) under sinusoidal 

temperature change. 

 

Figure 4 shows the effect of temperature change on the 

variation trend of critical temperature difference with 

respect to the plate aspect ratio ba /  for the material 

gradient index k  equal to 2. The relative thickness of the 

plate is set as 2.0/ ah . It is observed that with increasing 

the plate aspect ratio ba /  from 1 to 10, the critical 

buckling temperature difference also increases steadily. 

From Figure 6 It is found that the values of the buckling 

temperature difference computed with sinusoidal 

temperature distribution across the thickness are higher 

than those computed by linear temperature distribution.  
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Fig 4. Effect of the temperature change on critical buckling temperature of 

S-FGM plate ( 2.0/ ah  and 2k ). 

 

 



 Thermal buckling of AL/AL2O3 functionally graded plates based on first order theory 

 

16 

Figure 5 shows the buckling temperature vs. the material 

gradient index k  for a plate with 2.0/ ah  and ba  . 

We can see that the critical buckling temperature for a 

homogeneous plate with 0k  is considerably higher than 

those for the sigmoid functionally graded plate with 0k . 

It is evident that the critical buckling temperature 

difference decreases as the material gradient index k  

increases monotonically. However, it can be seen that for 

sinusoidal temperature distribution assumption across the 

thickness, the critical buckling temperature difference 

increases for the lower values of the material gradient index 

5.00  k .  
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Fig 5. Critical buckling temperature rise of an S-FGM plate vs. material 
gradient index k: (a) uniform temperature change; (b) sinusoidal 

temperature change; 

5. Conclusions 

Critical buckling temperatures of simply supported 
homogeneous and inhomogeneous composite plates have 
been analyzed by using the first shear deformation plate 
theory. The inhomogeneous plates are considered as 
Al/Al2O3 S-FGM plates. The buckling analysis of such a 
plate under two types of thermal loadings is investigated. It 
is shown that both the transverse shear deformation and the 
material gradient index have considerable effect on the 
critical buckling temperature difference of S-FGM plate, 
especially for a thick plate or a plate with large aspect ratio.  
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