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Summary 

To test for equality between heavily censored survival functions. The comparison 

between the average risk values is used. This value calculated in the Kaplan Meier 

model, according to a Bayesian design, and through the posterior mean approach. . 

This method gives credibility to the results found because the calculation of the risk 

mean is not identical for all durations because of incomplete data or censored data. 

Keywords: the posterior mean approach, Kaplan Meier model. 
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Résumé 

Pour tester l’égalité entre les fonctions de survie fortement censurées. On utilise la 

comparaison entre les valeurs moyennes des risques. Cette valeur calculée dans le 

modèle de Kaplan Meier et selon une conception bayésien et à travers l’approche de 

la moyenne a posteriori. Cette méthode donne une crédibilité aux résultats trouvés 

car le calcul de la moyenne de risque n’est pas identique pour toutes les durées à 

cause des données incomplètes ou bien les données censurées. 

Mots clés : l’approche de la moyenne a posteriori, le modèle de Kaplan Meier. 

Codes de classification de JEL : C11, C12, C41. 
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1. Introduction 

     Lifespan research consists of analyzing the occurrence of an event over time, 

whatever its nature (death, onset of a disease, recurrence of a disease, etc.). For 

this, it is important to have the time to follow each topic as well as when the 

incident occurred. The peculiarity of these studies for participants who did not 

ask the occurrence in question at the time of the research report is [the presence 

of incomplete data, called censored data; this requires an appropriate technique 

for their analysis]. Thus, research on the lifespan finds applications in many 

fields, whether they are biomedical or not, such as industry (for studies of the 

reliability of systems), physics (with the study of the duration of particle life) ... 

The first models for analyzing survival times were developed in order to model 

the observed survival in a univariate manner. They are nonparametric models 

like those used in the process of Kaplan and Meier (1958). Given the clinical 

and epidemiological needs to simultaneously take into account several variables, 

parametric models have been proposed to impose an a priori distribution of 

survival data (e.g. exponential distribution, Weibull distribution, etc.) in order to 

explain the effects. prognostic factors in a manner similar to that used in 

multiple regression (Feigl and Zelen, 1965). The methods of studying survival 

were initially built on the basis of inferential statistics, that is, according to a 

frequentist approach. Thanks to the work of Reverend Thomas Bayes (Barnard, 

1958) and his essay "An Essay to Solve a Problem in the Doctrine of Chance," a 

radically new approach to statistics was born. Thomas Bayes exposes the 

essence of conditional probabilities in this text, but faced with a logic allowing 

to deduce the probabilities of a given cause, Thomas Bayes looked at the inverse 

problem of the evaluation of the causes of observable events, supposed to be 

unknown Therefore, Bayesian methods in statistics have their roots in these 

ancient works; however, it should be noted that they were not widely used in the 

field of biomedicine until the early 1980s. Relatively recent advances, both at 

the theoretical level, with Markov chain theory and the The implementation of 

efficient and functional sampling methods, with increasingly powerful means of 

measurement, are at the origin of the increase in the production and use of these 

methods. It is normal that many methods have been developed for Bayesian 

survival analysis. Therefore, users of survival analysis methods generally have 

to select one tool from the range available. This choice does not only depend on 

the form of survival to be measured, but also on the statistical approach to 

inference used. In the case of semi-parametric models, many researchers have 

explored the use of Bayesian inference ((Ferguson, 1973; (Kalbfteisch, 1978; 
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Florens and Rolin, 2001) and parametric (Feigl and Zelen, 1965); (Carlin, 

Gelfand and Smith, 1992), etc. Such works have been constructed in different 

methodological contexts by using specific a priori distributions and / or by 

modeling the cumulative risk function, or more precisely the instantaneous risk 

function. 

2. Kaplan Meier model 

        Nonparametric models make it possible to estimate one of the different 

functions characterizing the distribution of the variable   without making any a 

priori assumption about it. In this approach, it is considered that the risk of death 

estimated at time t is independent of the risks estimated at previous times. In 

addition, the population is considered to be homogeneous, in the sense that the 

risk distribution is estimated for the entire population taken into account 

(without taking into account the effects of individual characteristics). The 

disadvantage is the size of the sample required as well as the estimation of the 

parameters which is more complicated (Archaux (2005), Boukhetala et al 

(2009)). If  , a random variable, represents the time elapsed since an instant t_0 

and when the time is considered in a discrete manner, if    represents an instant 

during which there is the observation of at least one event, then the probability 

of survival at time    is equal to the probability of having survived before    

multiplied by the “conditional” probability of surviving at time   . The use of the 

term "conditional" means here that it is about the probability of surviving time     

knowing that the individuals were survivors in    : 

                                                                          

the probability of survival at     then becomes: 

                    

                  
     
  

 

such as 

   represents the follow-up time since inclusion in the study for each individual 

 . 

  is the number of deaths at time     

   is the number of subjects at risk of presenting the event studied at the moment 

   , i.e. the number of patients who have not yet undergone the event nor the 

censorship just before   . 

By extension, if we consider            the distinct survival times of   

individuals,       corresponds to the product of all the probabilities of not having 

known the event since the start of observation: 
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3. The Bayesian conception of the Kaplan Meier estimator 

     In the frequentist approach the number of deaths in the interval of time is an 

realization of a Binomial distribution written by: 

                                                                                                                               

    From a Bayesian perspective we assume an a priori for    , and when the 

distribution used in the case of proportions is that of Beta, we set: 

                                                                                                                              

This a priori distribution has several important characteristics in our situation: 

 The mean of the beta distribution made it possible to control the precision 

of the a priori information (informative, non-informative). 

 The ease of finding the distribution a posteriori. 

 Flexibility of form. 

 In the use of Gibbs sampling or in rechanting methods in general, it has a 

remarkable efficiency because the Gibbs sampler performs a systematic 

update of each coordinate of the previous state in order to obtain the new 

state of the chain. 

    For the hyperparameters        we use a vague prior distribution, it is a 

proper distribution with a very large variance, according to this distribution, the 

prior distribution is considered to be weak informative, and we use this 

distribution for regularization and stabilization, it provides solutions in the use 

of algorithms. We pose: 

                

For a binomial distribution and a conjugate prior distribution we set 
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which provides a beta – binomial distribution to estimate      , in order to 

calculate               . we also pose: 

 
                                                   

             
  

4. the average value of the risk in the case of data of strongly 

censored durations 

     In the case of heavily censored duration data, the number of deaths over time 

is a Binomial distribution given by 

                                                                                                                                

and 

                                                                                                                                

in the case of data of heavily censored durations is not obliged to use the 

hierarchical version of the a priori distribution therefore:            

In this model we assume that    is constant and follows a saddle distribution 

                                                                                                                                

we assume the categorial density: 

                 

 

   

 

we also assume weights for the parameters            . Such as 

             

the parameters            represent a function of the censored data having 

lower weights than those of the uncensored data, then the average risk value is 

realized via a point approximate approach of the uncensored risks. 

      We use an arbitrary function that gives influence to weakly censored data: 

we pose; 

   
  

   
 
   

 

and 

   
    

       
 
   

 

So the difference between the mean values of the chance risks for two survival 

functions is: 



Ahmed Hamimes
 , Benamirouche Rachid 

  

138 
 

                                                                                                     

e-value is a probability that measures the probable difference or similarity 

between the average risk of the two survival functions. When we have two 

hypotheses of the following form: 

 
             
              

  

Il est possible de simplifie les deux hypothèses selon un forme d’un tableau 

comme suivant : 

Table 1: Decision table for the e-value statistic 

        Statistical decision 

            The risk of treatment A is higher 

than the risk of treatment B 

            Equality between average risks 

            The risk of treatment B is higher 

than the risk of treatment A 

 

5. Application 

     Within this segment, a clinical study estimates the survival mechanism of 

two prescription substances (placebo and prednisolone); this example uses the 

survival times of 42 patients with chronic active hepatitis. These patients were 

randomized into two distinct groups; one received treatment with prednisolone 

and the other received a placebo (see Held, 2010). 
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Table 2: Data and survival function for the Prednisolone group. 

Time Total No of 

Deaths 

Total No of 

censored 

No at risk Prednisolone S(t) 

2 1 0 21 0.9545 

6 1 0 20 0.9082 

12 1 0 19 0.8624 

54 1 0 18 0.8169 

56 0 1 17 0.8164 

68 1 0 16 0.7686 

89 1 0 15 0.7198 

96 1 0 14 0.6233 

125 0 1 13 0.6228 

128 0 1 12 0.6223 

131 0 1 11 0.6218 

140 0 1 10 0.6211 

141 0 1 9 0.6204 

143 1 0 8 0.5414 

145 0 1 7 0.5406 

146 1 0 6 0.4502 

148 0 1 5 0.4492 

162 0 1 4 0.4482 

168 1 0 3 0.2985 

173 0 1 2 0.2969 

181 0 1 1 0.294 

 

Table 3: Data and survival function for the Placebo group. 

Time Total No of Deaths Total No of censored Placebo 

2 1 0 0.9539 

6 1 0 0.9081 

12 1 0 0.8614 

54 1 0 0.8158 

56 0 1 0.7703 

68 1 0 0.7248 

89 1 0 0.6781 

96 1 0 0.6334 

125 0 1 0.588 

128 0 1 0.5421 

131 0 1 0.4965 

140 0 1 0.451 

141 0 1 0.406 

143 1 0 0.3604 

145 0 1 0.3149 

146 1 0 0.2694 

148 0 1 0.2689 

162 0 1 0.2683 

168 1 0 0.2677 

173 0 1 0.2668 

181 0 1 0.26 
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Figure 1: the comparison between the two survival functions. 

 

     From the survival curves estimated using the Bayesian Kaplan-Meier method, 

we find the following results that the divergence between the two functions 

occurs gradually, which means that the efficacy of prednisolone requires time to 

appear. Also the survival function of the two pharmaceutical products 

demonstrates that patients in the placebo group have a lower probability of 

survival than those in the prednisolon group, and according to this result 

prednisolone has an efficacy compared to the comparator (placebo). The graph 

is in the form of “transient difference”, where the convergence of the two 

functions is after the duration 168, which means that prednisolone will lose its 

effectiveness after this duration. 

     We now want to go beyond the graphical comparison of the two treatment 

groups to perform an appropriate statistical test. The Student t test does not lend 

itself to this, because it asks to ignore that in a part of the patients, the event has 

not yet taken place. Also the log-rank tests, Wilcoxon and Taron-Ware are 

developed for a reasonable number of censored data. Therefore, e-value is used 

to reduce the effect of censorship in the data. 

     In a first step, we calculate the e-value between the two survival functions of 

the example without any consideration in terms of censorship. The e-value is a 

probability and according to table (4) this value is clearly lower than the value 

0.5, so the difference between the two survival functions is significant. 

Table 4: the test statistic in the absence of the weights of the censored data (See 

A1). 

 mean sd MC_error val2.5pc median val97.5pc 

e. value 0.3814 0.4857 0.005884 0.0 0.0 1.0 
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If we can show the study by a comparison, with the classical methods we find: 

Table 5: Tests of equality of survival functions. 

Statistique Valeur 

observée 

Valeur 

critique 

p-value Alpha 

Log-Rank 4,028 3,841 0,045 0,05 

Wilcoxon 5,686 3,841 0,017 0,05 

Tarone -Ware 5,255 3,841 0,022 0,05 

 

   From the results summarized in Table (5), the p-value of the log-rank, 

Wilcoxon and Taron-Ware tests (see Table (1)) is below the threshold (5%), 

which means that we proved that there is a statistically significant difference 

between the survival probabilities of the two groups. So the two classical and 

Bayesian results are identical. 

Table 6: the test statistic in the case of using the weights of the censored data 

(See A2). 

 mean sd MC_error val2.5pc median val97.5pc 

e. value 0.3587 0.4796 0.002044 0.0 0.0 1.0 

    

  In Table (6), we calculate the e-value between the two survival functions of the 

example with the censorship weights. The e-value is clearly less than the value 

0.5, so the difference between the two survival functions is significant. The 

difference also that we find and that between the e-values where there is a 

reduction of 3% in the probability of difference: i.e. the difference between the 

two two survival functions increases by 3%, this value is small due to the size of 

the sample and the number of censored data there are cases where the difference 

is large. 
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6. Conclusion 

      The objective of this article is to test the equality between heavily censored 

survival functions. We use the comparison between the average risk values or 

the statistic (e-value). This value calculated in the Kaplan Meier model and 

according to a Bayesian design and through the posterior mean approach. In the 

results we find: 

 the. value is the probability of equality of the mean risks of the chance 

functions, this probability changes in the case of considering the weight of 

the censored data. 

 the. value gives credibility to the results found because the calculation of 

the risk average is not identical for all durations because of incomplete 

data or censored data. 
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8. Appendices (OpenBUGS codes) 

A1. 

model 

{ 

for (i in 1:m1) { 

d1[i]~dbin(q1[i],n1[i]) 

q1[i]~dbeta(0.01,0.01) 

w1[i]<-1/m1 

} 

for (i in 1:m2) { 

d2[i]~dbin(q2[i],n2[i]) 

q2[i]~dbeta(0.01,0.01) 

w2[i]<-1/m2 

} 

for (i in 1:m1){ 

ce1[i]~dbin(0.01,0.01) 

} 

for (i in 1:m2){ 

ce2[i]~dbin(0.01,0.01) 

} 

for (i in 1:m1){ 

qc1[i]~dbeta(0.01,0.01) 

} 

for (i in 1:m2){ 

qc2[i]~dbeta(0.01,0.01) 

} 

for (i in 1:m1){ 

p1[i]<-1-q1[i] 

} 

for (i in 1:m2){ 

p2[i]<-1-q2[i] 

} 

n1[1]<- 22 

n2[1]<- 22 

for(i in 2:m1){ 

n1[i]<-n1[i-1]-d1[i-1]-ce1[i-1] 
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} 

for(i in 2:m2){ 

n2[i]<-n2[i-1]-d2[i-1]-ce2[i-1] 

} 

for (i in 2:m1){ 

s1[i]<-s1[i-1]*p1[i] 

 } 

s1[1]<-p1[1] 

for (i in 2:m2){ 

s2[i]<-s2[i-1]*p2[i] 

 } 

s2[1]<-p2[1] 

q.avg1 <- q1[r] #Composite posterior, monitor this node 

r ~ dcat(w1[]) 

q.avg2 <- q2[r2] #Composite posterior, monitor this node 

r2 ~ dcat(w2[]) 

e.value <- step(q.avg1 - q.avg2)  

} 

list(m1=21,d1=c(1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,0),ce1=c(0,0,0,0,1,0,0,0,1

,1,1,1,1,0,1,0,1,1,0,1,1),m2=22,d2=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0),c

e2=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1))  

A2. 

model 

{ 

for (i in 1:m1) { 

d1[i]~dbin(q1[i],n1[i]) 

q1[i]~dbeta(0.01,0.01) 

} 

for (i in 1:m2) { 

d2[i]~dbin(q2[i],n2[i]) 

q2[i]~dbeta(0.01,0.01) 

} 

for (i in 1:m1){ 

ce1[i]~dbin(0.01,0.01) 

} 

for (i in 1:m2){ 

ce2[i]~dbin(0.01,0.01) 
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} 

for (i in 1:m1){ 

qc1[i]~dbeta(0.01,0.01) 

} 

for (i in 1:m2){ 

qc2[i]~dbeta(0.01,0.01) 

} 

for (i in 1:m1){ 

p1[i]<-1-q1[i] 

} 

for (i in 1:m2){ 

p2[i]<-1-q2[i] 

} 

n1[1]<- 22 

n2[1]<- 22 

for(i in 2:m1){ 

n1[i]<-n1[i-1]-d1[i-1]-ce1[i-1] 

} 

for(i in 2:m2){ 

n2[i]<-n2[i-1]-d2[i-1]-ce2[i-1] 

} 

for (i in 2:m1){ 

s1[i]<-s1[i-1]*p1[i] 

 } 

s1[1]<-p1[1] 

for (i in 2:m2){ 

s2[i]<-s2[i-1]*p2[i] 

 } 

s2[1]<-p2[1] 

q.avg1 <- q1[r] #Composite posterior, monitor this node 

r ~ dcat(w1[]) 

q.avg2 <- q2[r2] #Composite posterior, monitor this node 

r2 ~ dcat(w2[]) 

e.value <- step(q.avg1 - q.avg2)  

 } 
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list(m1=21,d1=c(1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,0),ce1=c(0,0,0,0,1,0,0,0,1

,1,1,1,1,0,1,0,1,1,0,1,1),m2=22, 

d2=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0),ce2=c(0,0,0,0,0, 

0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1), 

w1=c(0.05,0.05,0.05,0.05,0.045454545,0.05,0.05, 

0.05,0.045454545,0.045454545,0.045454545,0.045454545,0.045454545,0.05,0.

045454545, 

0.05,0.045454545,0.045454545,0.05,0.045454545,0.045454545),w2=c(0.05,0.0

5,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.041666667,

0.041666667,0.041666667,0.041666667,0.041666667,0.041666667)) 


