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Abstract: This paper presents the application of a new technique based on the variance of three phase 
stator currents’ instantaneous variance (VIV-TPSC) to detect faults in induction motors. The proposed fault 
detection algorithm is based on computation of the confidence interval index (CI) at different load conditions. 
This index provides an estimate of the amount of error in the considered data and determines the accuracy of 
the computed statistical estimates. The algorithm offers the advantage of being able to detect faults, 
particularly broken rotor bars, independently of loading conditions. Moreover, the implementation of the 
algorithm requires only the calculation of the variance of the measured three-phase stator currents’ 
instantaneous variance. The discrimination between faulty and healthy operations is based on the adherence 
of VIV-TPSC value to the CI which is calculated after checking out that the variance of instantaneous variance 
is a random variable obeying to normal distribution law. Rotor and stator resistance values are not used in any 
part of the CI and VIV-TPSC calculations, giving the algorithm more robustness. The effectiveness and the 
accuracy of the proposed approach are shown under different faulty operations.   
Keywords: Induction motor; fault detection; variance of three phase stator currents’ instantaneous 
variance; Confidence Interval.  
 

1. INTRODUCTION 
Despite the fast development and technological advances in the control and automation of complex 
processes, monitoring is a very important task which still remains largely a manual activity, carried 
out by operators, especially when it comes to respond to abnormal faulty operations; particularly in 
relation to induction motors, a center piece of motion power in industrial processes. Therefore, the 
diagnosis and repair of faults are of great importance to prevent costly damages and downtimes. 
Investigations on different failure modes in induction motors have revealed that up to 10% of the 
overall motor faults are related to cracked or broken rotor bars [1]. Operation of IM with broken 
rotor bars may not only damage the motor itself, but also have a very negative impact on the other 
system components.  
Many types of fault detection techniques have been developed but the main type of techniques are 
based on using the stator current to sense rotor faults as well as stator faults [2]–[10]. Each fault 
type is recognized by appropriate harmonic spectra. The harmonics in the stator current produced 
by rotor eccentricity are different from those produced by broken bars and those produced by 
bearings failure too [11]-[14]. All these harmonics must be separated from the fundamental one, 
requiring adequate skills to perform accurate analyses. Using different wavelet schemes have 
proven effective [15]-[20]. In [15], it suggested to apply DWT to the reactive power signal in order to 
detect broken rotor bars in induction motors under transient load conditions. Frequency analysis of 
the last four obtained approximations and details components at decomposition level 12 using 
mother wavelet Daubechies 5 are only used. The oscillations on these signals indicate the fault 
occurrence and the number of broken rotor bars. Furthermore, a defined faulty severity factor 
(FSF) is evaluated and by which the motor conditions regarding the broken rotor bars fault are 
classified. However, besides the load sensitivity (greater than 20% of rated load), DWT 
decomposition level cannot be generalized as well as FSF. In [16], a DWT –based approach is 
used for IM broken rotor bars diagnosis taking the type of power supply into account (direct line or 
inverter). The method is based on the computation of a variability factor to be compared with pre-
established thresholds for decision making on the motor condition. The technique cannot be easily 
generalized for other induction motor sizes besides that the DWT decomposition level is not the 
same for the same types of faults [15]- [20].  

Condition monitoring for different types of rotating machine faults detection and localization using 
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mechanical sensors, primarily vibration sensors based on proximity probes can be used as in [21]. 
However, these approaches are delicate and expensive [22].  

Model-based diagnosis methods consider a structural model of the behavior of the process based 
on fundamental physical principles. In [23], a model has been developed showing the relationship 
between faults which lead to asymmetry in the machine impedance and the consequence that is 
the unbalanced phase currents. Therefore by measuring the negative-sequence currents flowing in 
the line, the fault can be detected [24, 25]. However, negative-sequence currents can also be 
caused by voltage unbalance, machine saturation, etc, besides its sensitivity to slip and 
temperature variation. A Power Decomposition Technique (DPT) has been used in [26] to decrease 
sensitivity and harmonics effects; however, the detection procedure becomes cumbersome for 
implementation in industrial environment.  
Statistical-based IM broken rotor bars faults detection methods have been investigated in [27] and 
[28]. In [27], a fault index ratio is proposed to discriminate between one, two, or three broken rotor 
bars faults independently of motor load conditions. The fault index is the ratio of standard deviation 
to mean absolute value of stator current. However, this approach cannot hold if voltage unbalance 
fault is considered. As the mean absolute value is affected hence jeopardizing the faults 
discrimination process. A multi-combined faults detection method is implemented using FPGA 
board in [28]. The method uses a feedforward Artificial Neural Network (ANN) whose parameters 
(weights and biases) are obtained offline. The training data are the information entropy, the mean 
and the variance which are obtained from measuring the steady-state stator current for different 
considered faults (voltage unbalance, bearing’s outer race damage and broken rotor bar). This 
approach has been applied to a 1-hp induction motor and cannot be easily generalized to other IM 
sizes, except at the cost of a large training data needed to train the ANN.       
In this work it is proposed the use of the variance of three-phase stator currents’ instantaneous 
variance in detecting faults in induction motors. The detection algorithm has the important 
advantages of being simple, load-insensitive and based on the computation of only one parameter, 
the confidence interval index (CI). The index provides an estimate of the amount of error in the 
considered data and characterizes the accuracy of the computed statistical estimates. The data 
variability may result from random measurement errors caused by the system parameters 
uncertainties, internal and external noises, and also measuring instruments inaccuracies. 

2. EXPERIMENTALSETUP 
A low-voltage induction motor test facility was installed. It allowed the testing of a direct-on-line 3-
phase squirrel cage induction motor which could be quickly and easily replaced as necessary, 
under repeatable and wholly realistic operating conditions. The mounted induction motor is directly 
coupled with a loading DC generator. The rotor of the DC generator is connected to an electrical 
loading bank so that the electrical energy generated could be dissipated as heat. The load could be 
set at 0%, 25%, 50%, 75% or 100% of the maximum rated load - based on the output torque – by 
switching-in different resistor combinations within the electrical loading bank whilst the rig was 
online. Two different test motors have been used in the present work.  
 
 

 

 

 

 

 

 

 
Figure 1: Schematic of the experimental set-up 
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The 3kW squirrel cage induction motor whose parameters are given in the first row of table 1, has 
been used for the broken rotor bars test. The second motor which has the parameters shown in the 
second row of table 1 has been used for the voltage unbalance test.  
 

Table 1: Test motors’ specifications 

  Motor 

#1 #2 

Pa
ra

m
et

er
s 

Number of poles  4 4 
Stator winding connection Y Y 

Rated voltage 380 V 380 V 
Rated current 8 A 5 A 
Rated power 3 kw 2.2 kw 
Rated speed 1410 r.p.m 1430 r.p.m 

Number of stator slots 36 36 

Number of rotor bars 28 32 

3. PROPOSED FAULT DETECTION SCHEME 
 

In practice, the signal variability may result only from random measurement errors. Instrument 
measurements are often not perfectly accurate. It can be assumed that the quantity being 
measured is stable and that the variation between measurements is caused by observational 
errors. For current measurements, Hall Effect current sensors are used. 

These measurements are usually affected by random noise that is inherently due to the 
physical limitations of measuring instruments in terms of response time, and actuators reaction 
time. In addition, the dynamics are often overlooked as a source of significant errors causing 
extensive parametric variations in the overall process. The friction constants and geometric 
parameters are usually uncertain and may change during the operating process. For these 
reasons, it becomes worth investigating the benefits of the use of a specific technique based on the 
variance of the three instantaneous stator currents’ instantaneous variance in view of achieving a 
better fault detection capability in an induction motor systems.  

The instantaneous variance can constitute an adequate tool for measuring the degree of 
randomness of a given effect. It changes from one sample time to another under healthy 
conditions; therefore it can be classified as a random variable representing the effect under study. 
For each sample time an instantaneous variance 2

i , Ni ,,1 , is calculated as shown in 
equation 1.  

3 22
,

1

1
3i i j i

j

i m                                                                                                                  (1) 

where ,i ji  defines  the current of phase j at sampling time i and im that represents the 
instantaneous mean of the three stator currents is given as follow 

3

,
1

1
3i i j

j

m i                                                                                                                            (2) 

For a given time window, the variance of instantaneous variance 2
x , being as a fault detection 

index, is computed where x represents the instantaneous variance set of the three stator currents. 
The obtained sequence 2 2 2

,1 ,2 ,, , ,x x x N defines a random variable of a mean 2
x

m and a 

variance 2
2

x
. 

In a practical situation, the proposed fault detection approach is based on two principles; (a) 
the collection of current data sets under the healthy mode of operating and at different loads with 
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statistical analysis of the signals, (b) testing according to statistical characteristics established in 
part (a) under faulty mode.  
      For the purpose of fault detection, it is required to evaluate the Confidence Interval for the 
random variable . A fault is detected if the variance of the three phase currents’ instantaneous 
variance does not belong to the established confidence interval. To increase the sensitivity of the 
fault detection index, a confidence interval containing a given mean 2

x  with an acceptable 
probability should be a priori set up. This probability defines a confidence level (1 ) which is 
typically fixed at 95%.  
For normally distributed data, we define the confidence interval, known as the (1 )x100% 
confidence interval where  represents the error risk incurred by assert that 2

x  is located in the 

considered interval. The confidence interval ( 2
1

x
CI ) proposes an estimate of the amount of error 

involved in the considered data and characterizes the precision of the computed statistical 
estimates.  
For a relatively large number of experiments ( 50N ), the law of the shifted and scaled random 
variable can be approximated by the normal distribution law N(0,1). The (1 )x100% confidence 
interval of a random variable  at an error risk level  is given by: 

2 2 2 2 2
2 2 2 2

1 1.65 , 1.65
x

x x x x

CI m m    (3)  

 
The probabilistic computing of the fault detection index estimate, based on the variance of 

three-phase stator currents’ instantaneous variance, and its corresponding (1 )x100% 
confidence interval (3) are based on the fact that the random variable  approximately follows a 
normal distribution law of with  mean 2

2
x

m and standard deviation 2
2
x

. However, an appropriate 

statistical test is required to examine the validity of the results, which can be accomplished using 
the Kolmogorov-Smirnov test [29]. This choice is closely linked to the measures, distribution 
frequencies of the random variable , and number of available samples. Specifically, Kolmogorov-
Smirnov test creates in a given sample, a vector of cumulative frequency of the random variable 
obeying a normal distribution law N( 2

2
x

m , 2
2
x

). The cumulative frequencies which represent the 

distribution function are obtained from the probabilities kp assessed for any 2
2

x
less than 2  and 

are given by:  

2 2
2 ,kx

k kF p                                                                                                           (4)  

 
Thus, an empirical integral law F  of a mean 2

2
x

m and a standard deviation 2
2
x

 is defined in 

order to satisfy, for all 2 , the condition 0FkF and consequently:  
 

2
sup 0kF F                                                                                                                       (5)  

This means the largest difference between Fk and F tends to zero in probability. 
 
     The non-parametric Kolmogorov-Smirnov test of the variance of three-phase stator currents’ 
instantaneous variance (VIV-TPSC) is used in validating that the random variable  is normally 
distributed. The effectiveness and accuracy of the proposed fault detection index in detecting faults 
is tested by its adherence to the corresponding (1 )x100% confidence interval.   
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4. ANALYSIS OF THE EXPERIMENTAL RESULTS 
 

The variance of the three phase currents’ instantaneous variance is calculated from three 
independent runs of the induction motor which operates under healthy mode. The three runs 
correspond to 0%, 50% and full load operation respectively. Each run consists of 73 repeated 7 
and double periods’ parts for motor #1 and motor #2, respectively. Where, one period represents 
65 samples. This number of periods covers all harmonics which can appear in the presence of any 
fault in the induction motor. In addition, it is chosen in order that VIV-TPSC is normally distributed. 
However, it is fixed for different used statistical procedures.  

At each aforementioned load and for each motor, a variance of the three phase currents’ 
instantaneous variance is obtained. In figure 2, it is shown the frequencies appearance of the 
sampled VIV-TPSC under a healthy mode and at different loads. It can be seen that the sampled 
VIV-TPSC is relatively bell-shaped at different loads especially for the motor #2. Almost all the VIV-
TPSC frequencies appearance and their corresponding estimated density function are 
approximately superimposed. However, from an inspection of the histogram of VIV-TPSC of the 
motor #1 at 0% load, it can be easily seen that the stair curve is so far the shape of a bell. In 
addition, the VIV-TPSC having the bell-shaped distribution is obtained by the estimated density 
function with mean of VIV-IPSC and standard deviation covering the most VIV-TPSC frequencies. 
The truth or falsity that VIV-TPSC is normally distributed at different load can be reasonably certain 
by using a statistical test. Indeed, in accepting the normality of VIV-TPSC at 0% load of the motor 
#1 is a great deal uncertain. The non-parametric Kolmogorov-Smirnov test merely implies that we 
have no evidence to believe by eyes the VIV-TPSC normality distribution. Therefore, the non-
parametric Kolmogorov-Smirnov test is merely used to validate the normal law of the VIV-TPSC at 
typical error risk of 5%.  The obtained p-values for the motor #1and motor #2, representing the 
probability of accepting under the assumption that the VIV-TPSC is normally distributed, are 
regrouped in table 2. However, the chosen error risk level is related to the degree of certainty 
required to reject that the VIV-TPSC sample follows a normal law. This is true if the probability of 
observing a sampled result is less than the error risk. Therefore, the VIV-TPSCs satisfy the normal 
distribution law with fairly acceptable probabilities.  

 In figure 3 is illustrated the 95% confidence interval for the VIV-TPSC at different 
loads (0%, 50% and full load) and computed for 7 and double periods for the motor #1 and motor 
#2, respectively. This 95% confidence interval, developed at different loads, fully satisfies the The 
variance of the three phase currents’ instantaneous variance is calculated from three independent 
runs of the induction motor which operates under healthy mode. The three runs correspond to 0%, 
50% and full load operation respectively. Each run consists of 73 repeated 7 and double periods’ 
parts for motor #1 and motor #2, respectively. Where, one period represents 65 samples. This 
number of periods covers all harmonics which can appear in the presence of any fault in the 
induction motor. In addition, it is chosen in order that VIV-TPSC is normally distributed. However, it 
is fixed for different used statistical procedures. 

  
Table 2: Probabilities of accepting the normality distribution of VIV-TPSC 

 Load 
0% 50% 100% 

M
ot or
 #1 0.1495 0.8453 0.1894 

#2 0.9374 0.9388 0.6044 

 
At each aforementioned load and for each motor, a variance of the three phase currents’ 

instantaneous variance is obtained. In figure 2, it is shown the frequencies appearance of the 
sampled VIV-TPSC under a healthy mode and at different loads. It can be seen that the sampled 
VIV-TPSC is relatively bell-shaped at different loads especially for the motor #2. Almost all the VIV-
TPSC frequencies appearance and their corresponding estimated density function are 
approximately superimposed. However, from an inspection of the histogram of VIV-TPSC of the 
motor #1 at 0% load, it can be easily seen that the stair curve is so far the shape of a bell. In 
addition, the VIV-TPSC having the bell-shaped distribution is obtained by the estimated density 
function with mean of VIV-IPSC and standard deviation covering the most VIV-TPSC frequencies. 
The truth or falsity that VIV-TPSC is normally distributed at different load can be reasonably certain 
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by using a statistical test. Indeed, in accepting the normality of VIV-TPSC at 0% load of the motor 
#1 is a great deal uncertain. The non-parametric Kolmogorov-Smirnov test merely implies that we 
have no evidence to believe by eyes the VIV-TPSC normality distribution. Therefore, the non-
parametric Kolmogorov-Smirnov test is merely used to validate the normal law of the VIV-TPSC at 
typical error risk of 5%.  The obtained p-values for the motor #1and motor #2, representing the 
probability of accepting under the assumption that the VIV-TPSC is normally distributed, are 
regrouped in table 2. However, the chosen error risk level is related to the degree of certainty 
required to reject that the VIV-TPSC sample follows a normal law. This is true if the probability of 
observing a sampled result is less than the error risk. Therefore, the VIV-TPSCs satisfy the normal 
distribution law with fairly acceptable probabilities.  
 In figure 3 is illustrated the 95% confidence interval for the VIV-TPSC at different loads 
(0%, 50% and full load) and computed for 7 and double periods for the motor #1 and motor #2, 
respectively. This 95% confidence interval, developed at different loads, fully satisfies the condition 
of reliable faults and eliminates false fault detection caused by external noises and parametric 
variations which are significant from the dynamic standpoint of the induction motor. Consequently, 
it increases the fault detection index sensitivity and accuracy. The induction motor is considered to 
be undergoing a faulty operation, if any sampled VIV-TPSC does not belong to the corresponding 
confidence interval.  
 The 95% confidence interval calculated under the healthy mode with no and full load on the rotor 
shaft is considered as a threshold. Indeed, the biggest value of the CI corresponds to the healthy 
mode with full load operation whereas the lowest corresponds to the no-load operation. Thus, a 
faulty operation of the motor is detected if the measured VIV-TPSC is out the tube limited by the 
healthy biggest and lowest CIs.  

 
a) Motor #1  

 
b) Motor #2 

Figure 2: VIV-TPSC’ histograms under healthy mode for motor #1 and motor #2 at different load conditions 
 

28 30 32 34 36 38 40 42
0

2

4

6

8

10

12

VIV-TPSC at 0% load
54 55 56 57 58 59 60 61 62 63
0

2

4

6

8

10

12

14

16

VIV-TPSC at 50% load
102 104 106 108 110 112 114 116 118 120 122
0

2

4

6

8

10

12

14

16

VIV-TPSC at 100% load

12.5 13 13.5 14 14.5 15 15.5 16
0

2

4

6

8

10

12

14

16

VIV-TPSC at 0% load
14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5
0

5

10

15

VIV-TPSC at 50% load

20 21 22 23 24 25 26 27 28 29
0

2

4

6

8

10

12

14

VIV-TPSC at 100% load 



ALGERIAN  JOURNAL OF SIGNALS AND SYSTEMS (AJSS) 

 
 

Vol.2, Issue 3, September-2017| ISSN-2543-3792  136 
 

To validate the proposed strategy and test the ability of VIV-TPSC in detecting various 
forms of faults, two types of fault operation are considered in this work: one broken bar and voltage 
unbalance. 
 

  
Figure 3: 95% Confidence Interval for motor #1 and motor #2 VIV-TPSC at: - (bleu dashed line) full load;- (red 

solid line) half load;- (black point line) without load. 
 
 
Broken rotor bar fault 

The induction motor is directly connected to rated three phase voltage source while one bar in the 
rotor has been damaged. Figure 4.b shows a drilling hole being performed to obtain one broken 
rotor bar compared to the healthy one figure 4.a. Different runs with loads conditions (no-load, 50% 
and full load) have been carried out, the three phase stator currents are measured and the VIV-
TPSC is calculated and compared to the CI without fault. Figure 5 shows clearly that broken bar 
instantaneous variance mean is greater than that of the healthy case irrespective of the load level 
conditions. The New stator current harmonics with frequencies given by fskfb ).1(  are 
created in the stator due to broken rotor bar. By sampling the new signals of the currents, the 
presence of these harmonics will contribute in the calculation of the VIV-TPSC by increasing its 
value. The advantage of the method lies in the fact that even though the amplitude of these 
harmonics is very small at no-load (the slip can never actually be null due to the friction) but their 
small values will certainly affect the mean value and consequently the value of the variance. For 
more than one broken rotor bar, greater values of the variance of instantaneous variance is 
expected to be obtained owing to the presence of more harmonics in the measured stator currents.   
 
 
 

 

 

 

 

 

 
 
 

Figure 4: Healthy and one broken bar rotor 
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Figure 5: VIV-TPSC of motor #1 with one broken bar fault at different load conditions 

 
Unbalanced supply voltages 

The voltage unbalance is introduced while the motor is operating for different load 
conditions; no-load, 50% and full load. Two tests with respectively 2.5% and 5% of stator voltage 
unbalance are carried out and the VIV-TPSC is calculated. Figure 6 shows the upper and lower 
limits of the VIV-TPSC corresponding to the healthy operation of the motor #2 and different faulty 
VIV-TPSCs due to 2.5% voltage unbalance. It can be easily seen that the VIV-TPSC at different 
aforementioned loads is outside the 95% confidence tube. Consequently, the faulty VIV-TPSC is 
still greater than the upper limit of CI independently of the load conditions.  
The results shown in figure 7 correspond to the case of 5% voltage unbalance supply. The 
obtained faulty VIV-TPSC shows clearly in comparison to confidence interval of the healthy case 
that it is robust against the load variations.  
By analysing the stator current owing to voltage unbalance, one can find mainly the 3rd harmonic 
which is dominant in the spectrum analysis of the current. Although the magnitude is much greater 
than that of the fundamental, the VIV value is still comparable to that of broken rotor bar motor 
currents but indeed different.   

 
Figure 6: VIV-TPSC of motor #2 with 2.5% voltage unbalance fault at different load conditions 
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Figure 7: VIV-TPSC of motor #2 with 5% voltage unbalance fault at different load conditions 

5.    CONCLUSION 
 In this work a new approach based on the computation of the variance of three-phase 
stator currents’ instantaneous variance (VIV-TPSC) in detecting IM faults at different loads with 
satisfactory accuracy is proposed. The accuracy, simplicity and efficiency of the algorithm are 
achieved thanks to an adequately defined confidence interval, hence overcoming the difficulties of 
parametric uncertainties quantification and devices measurement inaccuracies which increase the 
number of false alarms. The presented experimental results confirm the capability of the fault 
detection index based on VIV-TPSC to detect broken rotor bars and voltage unbalance faults. The 
one broken bar fault, that is difficult to detect by most of the applied detection methods so far, has 
been detected by the VIV-TPSC algorithm. Besides its simplicity, the proposed algorithm needs 
only the value of the stator currents making it very suitable for motors monitoring.      
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