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Résumé :

La propagation des ondes classiques dans les milieux aléatoires est étudiée en présence des
corrélations a courtes distances dans le désordre. Un analogue clussique du modéle de Kronig-
Penney est proposé en considérant une chaine de sous-systémes identiques, chacun étant constitué
d’une masse reliée a socle rigide par un ressort. Les masses sont relices entre elles par un fil soumis a
une tension uniforme. La nature des modes est examinée par le formalisme des matrices de transfert.
Les propriétés de propagation du systéme sont étudiées d'une manicre statistique mettant en valeur un
grand nombre de grandeurs physiques telles que le coefficient de transmission, la longueur de
localisation et les exposants critiques. En particulier il est mis en évidence que lu présence de
corrélation dans le désordre permet de restaurer un grand nombre de modes de propugation du type
onde de Bloch en contradiction avec les conclusions obtenues par d'autres modéles de la littérature.
Mots-clés: Désordre, systeme unidimensionnel, Corrélation, localisation

Abstract:
The propagation of classical waves in one-dimensional random media is examined in presence of

short-range correlation in disorder. A classical analogous of the Kronig-Penney model is proposed by
means a chain of repeated sub-systems, cach of them  constituted by « mass connected to a rigid
Joundation by a spring. The masses are related to each other by a string submitted to uniform tension.
The nature of the modes is investigated by using different transfer matrix formalisms.  The
transmission properties of the system are numerically studied using a statistical procedure yielding
various physical magnitudes such the transmission coefficient, the localization length and critical
exponents. In particular, il is shown that the presence of correlation in disorder restores a large
number of extended Bloch-like modes in contradiction with the general conclusion of the localization

phenomenon in one-dimensional systems with correlated disorder.
September 2006
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1- INTRODUCTION
Then, it is clear that the disorder precludes the

According to the universal conclusion of the presence of long-range propagation. However,
scaling theory [1], it is well understood that in recent theoretical approaches have successfully
one-dimensional (1D) disordered systems, all examined different ways in delocalizing the
the elementary excitations are localized in the states indicating that disorder can be creative
Anderson sense [2]. Such localization cffects [5-6]. A challenging scenario has been put for-
are known to have a significant relevance in wards to suppress localization allowing the
other wave propagation phenomena in random propagation of waves: namely correlation in
media [3]. Indced. classical waves may offer disorder. Originally introduced by Dunlap et
casier and more direct realization for the al.|7]. the random dimer model (RDM) has
observation of the Anderson localization in 1D been applied to various domains: conducting
disordered systems [4]. polymers [8-9], semiconductor disordered
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superlattices [10,11] pointing out the existence
of truly extended states supported by
experimental evidences [10]. The key idea is
that the RDM within a short length correlation
restores the tunnel effect and then the
necessary condition for delocalizing the
particle. However all this matter holds only for
the quantum case since the competition
between destructive interference and tunnel
effect is the major cause leading to the
localization or delocalization of the states.

To our knowledge, very few has been done in
this context in the classical sense. This has
prompted us to examine the effect of the
correlated disorder via the dimer effect on the
propagation of classical waves. The 1D classi-
cal system illustrating the analogy between
electron-wave and classical-wave may cons-
tructed as follows: the wave medium at each
regular lattice point is constituted by a large
string having negligible mass submitted to a
uniform tension; a mass is linked to a ground
foundation by a spring forming a unit cell. In
this situation, the wave field consists of
transverse amplitudes along the string. Here
the dimer is introduced by assuming a con-
centration of two successive identical cells at
random through a host lattice of identical cells.
Typically it corresponds to  a random binary
alloy with dimer. It is expected that such
system restores the existence of extended
modes. The paper is organized as follow: in the
second part, we describe the formalism leading
to the physical quantities of interesting by
using the technique of transfer matrices such
the coefficient transmission, the localization
length and the critical exponents at the
transition. In the third part we present and
discuss the results computed numerically
within a statistical treatment. Finally, the
conclusion closes the paper.

2- THEORETICAL MODEL

A semi-infinite tight string with homogeneous
density is submitted to a uniform tension 7).
The string is formed by a large number of sub-

systems at each lattice discrete points Xx»=nd , d
being the lattice spacing. Each subsystem is

contructed by a mass M, connected to a groun-
ding rigid foundation by a spring having a line-
ar stiffness K, . We are interested by the pro-

pagation of transverse wave in the vertical pla-
ne. The transverse displacement y at the longi-

tudinal coordinate x is solution of the equation
of motion :

I ) Sl yl) (1)

h=—n

with:

» Ty

k== and v, = |— (2)

Vo P
k and vwdenoting the wave vector and the
wave velocity through the whole system res-
pectively. Here @ is the fundamental frequen-
cy to be determined. The term A, related to

each delta peak corres-ponds to vibration mode
given by [30]: '

. K 2
2 =2 (K, -Mo?)=2r1-2|3)
TO TO Qn

where:

e @

Physically Q, defines the free frequency of

the n™ subsystem while A, has the meaning of

an effective delta peak strength. Azl defines a

characteristic length translating the bearing of
the associated string. Randomness may be in-
troduced in different ways: disorder in mass
and /or stiffness. Here, we restrict ourselves to
the first one without lost of generality. Thus ,
the ~masses are statistically independent
variables given by a common probability
distribution.

In the region

nd<x<(n+1y,
the solution of Eq.(1) is a superposition of
forward and back-ward scattering waves:

y(x)= Anexp(ikx)+Bnexp(—ikx)  (6)

where A, and B, denote the amplitude coeffi-

cients in the n-th region. Introducing the reflec-
tion the transmission amplitudes r,, and ¢, of

the system, y(x) satisfies the limit conditions:

exp(ikx)+ryexp(—ikx) x <0
y (x) (7
tyexp(ikx) i,

where L = Nd is the system size.
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The amplitudes A, and B, through the initial

n
and final amplitudes can be linearly expressed
darv conditions giving: the total
transtor matrix AM7N) of the system, -~

using  boun

womgluofdl) o

where S(L,0) refers as the total diffusion
matrix. This allows one to determine the
transmission  coefficient which is the
fundamental physical quantity of interest:

4

= 2
(S”+SHY+(§1§—'—/< S.2)

From an analytical point of view, the wave pro
pagation equation may be achieved within the
Poincarré map representation, which in turns
ena- bles one to relate the displacements at
successive iaftice points.

Ty

(10)

Defining ynsy’.\x:mc:’), Eq.(1) may be exac-
tly  transformed [13] into a simple recursive

site description :

(ym} {y,, H 2 an() -1I yn J

=Rn(a)

P Y-l 1 0 A\yn
(1m

where:

a, (@)= cos(kd) + %sin(kd) (12)

is the standard KP formula yielding the fre-
quency spectrum [ 6 ]. Within the basis of the
on-site wave functions, the transmission
coefficient at the end of the chain, i.e. n = N,
reads as the ratio:

2
,TN(‘U) - lﬂl?
|y0|

Once the transmission coefficient is known,
the nature of the propagating modes may be
characterized by the normalized Lyapunov
exponent given by the ratio:

(13)

A

L 1
== ——logT 14
508 (14)

where £ denotes the localization length.

3. CONCLUSION

The propagation of classical waves in random
media has been studied by using an analogous
with the well known electronic disordered
Kronig-Penney ~model to observe the
phenomenological aspects of the Anderson
localization. At this stage we have been able
to obtain a close formulae describing the
propagation properties of the system. Towards
this end we are developing a numerical
simulation for the coefficient transmission and
all other related physical magnitudest
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