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ABSTRACT )

We present in this paper an approach to understanding one of the recent tools used in the signal
processing world, that is the Wavelet theory. The philosophy of this paper is based on utilizing the
Fourier theory as a platform to illustrate the Wavelet analysis. For this purpose, we present the
relationships between these two techniques, as well as the results of applying these techniques to three
different cases representing signals with particular features. The obtained results show obviously the
improved ability of the wavelet transform to analyze some complicated cases of signal regarded to the
Fourier analysis.

RESUME

On présente dans cet article une approche permettant la saisie d’un outil récent utilisé en traitement du
signal qui est la théorie des ondelettes. La phiplosophie de cet article est basée sur ['utilisation de la
théorie de Fourier comme une plate forme pour la compréhension de la théorie des ondelettes. Dans ce
contexte, on présente les relations entre ces deux théories ainsi que le résultat de leurs applications aux
trois cas de signaux chacun avec des caractéristiques particuliéres. Les résultats obtenus monitrent
clairement la capacité supérieure de la transformée d’ondelettes dans ’analyse des cas compliquées de
signaux vis a vis a la transformée de Fourier. '
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1- INTRODUCTION e simple theory stating that any periodic signal can
One of the most important purposes of the signal be decomposed to a set of elementary periodic
processing is to extract the main features of the signals. This theory has been exploited later and
signal such as : peaks, transients, abrupt changes, extended to the aperiodic signals and recovering

frequency information... These objectives can be now an arsenal of tools such as the DFT and FFT
achieved into different manners by using different techniques. This technique is still a powerful tool

signal transformations or representations. This in the signal processing field , Whereas it is not so
variety of transformations are imposed by the suitable in all the cases such as the non-stationary
nature of the information looked for. A common or the time-varying spectrum signals and those
way to represent a signal (usually time-varying) is representing the transients and discontinuities; the
to decompose it into elementary blocks as follows problems that suffer from the most of the real
: f= 2 fj or more precisely f =<e<; , ¢; > where ¢; signals : seismic, speech, biomedical...

are the transform windows or supports and o< ; are An interesting extension of this technique was
called the transform coefficients. This operation is developed by Gabor in the 1940’s known as the
called the synthesis or the reconstruction of the Short Time Fourier Transform. He introduced a
signal f. Conversely, the signal f can be sliding fixed size window and to translate it along
represented using the transform coefficients  the time axis with a fixed shift factor (t). The idea
following the reversed path that is : cc=<%;, f> was to scan the temporal occurrence of the signal
where W; are the dual transform windows. This ~ €vents, the new concepts were risen, the time-
operation is well known as the analysis or the frequency analysis of the signal and consequen.tly
decomposition of the signal f. the. t}me—frequency re.solunon.. Qne major
The rodt work of the signal transformation theory limitation suffers from thls technique is the fixed
is the Fourier transform. It was at the beginninga ~ time-frequency resolution due to the fixed

window size and shift values.
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To drawback this limitation the wavelet theory, a
mathematical concept developed by Haar in the
carly of the 10’s, was introduced. The key idea
was to use of a set of basic functions that are the
scaled and shifted versions of an original limited
duration function called the “mother” wavelet.
The wavelet analysis has been mainly used for the
analysis of the non-stationary signals and those
representing transients- such as : drifts, sudden
peaks, the rapid rising and falling edges of the
events,  trends, sudden changes, and
discontinuities. Its development comprises several
works of researchers and scientists in different
fields as the applied mathematics, geophysics,
physics, computer science, and engineering. In
sum, the main support of the wavelet concept was
the great work oh Haar in 1910°s [1]. Basically,
the term “wavelet” was first used in the 70’s when
J. Morlet improved the STFT performances by
introducing a  scaled  (dilated/compressed)
windows instead of the fixed size ones. Later,
with his friend A. Grossman deepen their
researches and found many applications of this
new technique. In the middle of 80’s Meyer with
his collaborators came up with the orthornormal
wavelet bases. Not far from, Lémarie and Battle
came up with, independently, constructions of
wavelet bases consisting of spline functions, with
better decay than Meyer’s wavelets, in price of
some regularity [1]. Latter, Mallat and Meyer
introduced the multiresolution analysis concept
[2]. Since 1987, the idea of using the FIR filters
for constructing orthornormal wavelet bases has
led to the subband filtering. The application of
this technique has introduced an undesirable
aliasing effect, that has been cancelled by the use
of the Quadrature Mirror Filters (QME). One of
the most known meticulous work for the
construction of wavelet filters are that of Ingrid
Daubechies [3] in late 80’s and early 90’s.
Different researchers have contributed at the
development of the wavelet concept and
applications..

2- FOURIER ANALYSIS
Fourier theory is one of the most well known
techniques used in signal processing world. Signal
analysts have at their disposal an arsenal of tools :
Fourier series decomposition, continuous and
discrete Fourier transforms , the fast Fourier
transform. ..
The Fourier analysis can be viewed from two
sides :
e It decomposes any given time-varying
signal x(t) into elementary building
blocks @i(t) and can be expressed as :

X(O=Z ci(t) ei(t) (1
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Where @i(t)=e”™ and c(t) are called Fourier
coefficients
e It transforms the time representation of
the signal —x(t)- to its corresponding
frequency representation (spectrum) X(f)
and can expressed as :
X(D)= x(t). e ™ dt )
We are interested in this paper to the
continuous Fourier transform rather than the
Fourier series decomposition.
The signal analysts know perfectly the Fourier
theories and their consequences, what we will do
in this paper is to denote some interesting remarks
that be useful to illustrate the wavelet theory.
A brief study of the continuous Fourier transform
shows some limitations that are:
e The FT is computed along an infinite
interval of time domain;
® Reconstructing the original time-varying
signal depends mainly on the cancellation
of the high frequency Fourier coefficients,
that is sensitive to high-frequency noise;
e The FT is perfectly local in frequency
whereas it is global in time. It can localize
~any two very adjacent frequencies, while
the time occurrence of these frequency
components is completely lost. This
limitation arises especially when dealing
with the non-stationary signal.
This last limitation obligated the signal analysts to
bring up with a new technique that allows the
time localization of the analyzed signal. Gabor
was the first to improve the continuous Fourier
transform (CFT) by suggesting the short time
Fourier transform (STFT) in the 40’s [4]. He
introduced a fixed size (duration) window —g(t)-
that is translated along the time axis with a fixed
shift factor -1-. The non-stationary time varying
signal is, then, divided into a sequence of
segments in which the signal is considered to be
quasi-stationary. The resulting transform is two-
dimensional representation and it represents the
time-frequency of the signal. The STFT is given
by :
STFT(f, 1) = [f(t).g*(t-1).exp(-j.£t) dt (3)
This technique permits the time localization (AT)
of the signal, while at the other hand the
frequency localization (AF) is degraded due to the
convolution operation of the signal spectrum with
the window spectrum.
The  time and  frequency  resolutions
(localization’s) of the analyzed signal are defined
respectively as :



Wavelet Analysis Versus Fourier Analysis

: Application To Time-Varying Spectra

J A
J 0] 5

J |G| dr

J | (n)]2dr

These two parameters (AT and AF) depend
firmly on the window and its spectrum sizes; they
mean that a signal can not be represented as point
in the time-frequency plan; its position can be
only determined within a rectangle of AT*AF.
More precisely, it means that it is impossible to
discriminate between two adjacent frequencies
components (f0 and f1) if they are not Af apart
each other (f1=f0+Af); similarly for the temporal
case. Unfortunately these parameters can not be
chosen independently since they are governed by
what is called the uncertainty principle (or
Heisenberg inequality) stating that : AT*AF =
1/(4m)=0.08. The only solution is to trade time
resolution for the frequency resolution or vice
versa.

A = 4)

AP (5)

3- WAVELET ANALYSIS

The wavelet analysis includes an arsenal of
approaches such as continuous wavelet
transform, wavelet series decomposition, discrete
wavelet transform, fast wavelet , transform
algorithm... We limit our discussion, in this
paper, on the continuous wavelet transform.
3.1-Continous Wavelet transform (CWT) :

As we have seen in the previous paragraph, the
Fourier transform provides two basic approaches :
the continuous Fourier transform and the STFT.
The two parameters can be extracted from these
two  techniques respectively frequency
(dilatation / compression) of the trigonometric
functions and the shift (translation) of the
window. Also, we have remarked that the time-
frequency resolution is fixed along the time-
frequency plan.

Figure 1 shows, respectively, the time-based,
frequency-based, and the STFT views of a given
signal. '

To overcome the limitation of the STFT, what is
obviously needed is a transform view of a signal
that has a changed sizes (At and Af) of the
information cells , of course respecting that
At*Af=0.08, similar to the next figure (figure 2).
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Figure 1 : time-view, frequency-view, and time-
frequency view of the signal
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Figure 2 : The needed transform view.

This concept can be accomplished by introducing
a scaled window (dilating / compressing) with a
changed shift parameter along the time axis. We
can imagine, so, a transform given by :

Trsfls, ox(1) = <x(1), & « (1)>

The transform Trsf(s, x(7)) is the inner product of
the signal x(t) with the scaled and shifted version
of the original window &(t) by scaling and shifting
factors (s,7) respectively.

Indeed, the wavelet transform is based on this
technique. The CWT is a set of coefficients
computed by the inner product of the time-
varying signal x(t) and a family of wavelets.

The continuous Wavelet transform CWT is given
by: CWTp(D=<fh>=k(0). h'p (©) dt
(6)
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where hyy (t) are generated from a “mother” or
‘prototype” wavelet —h(t)- by scaling and shifting
with a shifting factor b and a scaling factor a.

The CWT of one-dimensional function fit) is a.

two-dimensional function of the scale —a- and the
shift-b- and is refereed to as the time-scale joint
representation.

The wavelets h',, (t) are given by:

by o(0) = — h t_b] (7
] J- a
The constant (a) guarantees the energy
normalization, that is :
[ ey ®)[2dt=Tlh () Fdt (8)

So all the wavelets h,, (t) of the same family have
the same shape and the same energy.
This last remark leads us to state that the WT does
not require a specified wavelet functions; in
contrast to the CFT that requires the trigonometric
functions as bases. Anyone can build his own
wavelet function with the condition that the
constructed wavelet must satisfy two properties
that are : the admissibility and the regularity.
3.2- Wavelet properties

¢ The admissibility condition
The admissibility condition includes, in essence,
the energy conservation in the time-scale space,
that implies a possible reconstruction of the
original sighal x(t) from its CWT, and is given by:

1 1
(t) =1— CWT(a,b,x) h, () = da db (9)
a

the reconstruction can be accomplished if the
following condition is satisfied :

|H(w)| 2

w

Cy = dw< o (10)

where H(w) is the Fourier transform of the basic
wavelet h(t).
the last condition requires that H(w) has to be
zero at zero frequency value that is H(0)=0.
In other words, this implies that the average value
of the wavelet function is zero that is : Ja(t).dt=0
This means that the wavelet function has to
oscillate, that where it comes the world “wave”.

e The regularity condition
The regularity condition is imposed to the wavelet
function in order to make it local in frequency
domain, furthermore the wavelet function is
already local in time domain. For this purpose, the
FT of the wavelet function is null at zero
frequency, what is required now is to impose that
H(w) has to decay and vanish above a certain
frequency or scale value.
Mathematical calculus léad to that the speed of
the convergence of the CWT coefficients towards
zero with decreasing of the scale b (to limit the
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band pass of the filter H(w)) is determined by the
order of the wavelet h(t) -N-, e.g. the first null
moments of the order up to N of h(t) that is [2]:
Mp=[Ph(t).dt=0 for p=0, 1, ...N (11)
In the frequency domain, this is equivalent to the
Nth derivative of H(f) to be equal to zero at the
zero frequency that is :
H® (0)=0 for p=0, 1, ...N
This equation implies that H(f) has N+1 zeros at
the zero frequency ; so we can write H(f) as :
K :
H()="D 3 a1
i=0

(12)

with k € Z.

obviously, the H(f) vanishes faster and sharper as
the order N of the wavelet increases.

These two properties (conditions) gave the studied
function the term “Wave-Let”. _

3.3- Time-frequency resolution

As it has been stated, the CWT is defined as:
CWTa.b(x)=<x(t)aha,b(t)>

Using Parseval’s identity, the CWT can be
defined as’:

CWT,p(x)=(1/21) <x,H,p(w)> (13)
where Hyp(w) is the FT of the h,(t) and can be
defined as :

Hop(W) =(2)"? e™H(w)  (14)

At the other hand, we have seen in the previous
paragraph that the wavelet function h(t) and its
spectrum are of finite band, we can then define
their finite centers Tc and Fec and their radii AT
and AF respectively (see figure 3).

These quantities are defined as [3, 6]:

1
——| t|h)]zdt
I ||2J |

Tc = (15)
1
AT = WJ (t — Tc)? |h(t)| 2dt (16)
and similarly for Fc and AF,
o8 Tc
o6
02
&l
02
-06
08
o 0 20 30 40 50 &0 70

Figure 3: the center Tc and radix AT of the Morlet
wavelet

It can proven that the CWT with a specified scale
and shift factors (a0 and b0) picks up the
information within the time interval [b0+a0.Tc-
a0.AT , b0+a0.Tc+a0.AT] and the frequency
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interval [(Fc-AF)a0 , (Fct+AF)/a0]. These two
intervals determine the time-frequency window
(or the information cell) sizes. It is proven, again,
that the information cells sizes of the CWT are

governed by the scale and the shift values. In.

summary, we can simulate the CWT to
microscope where the scale and the shift values
represent the zoom (in, out) and the position of
the picked image respectively.

3.4- Discrete versions of the CWT

The CWT requires an infinite scanning of the
signal x(t) along infinite points of scales and
shifts, that is a critical problem arises when
dealing with numerical systems. A trivial solution
for this problem is to discretize these two
parameters. One of the most commonly
discetization method used is that based on the
dyadic grid, that is:

a=2' and b=k.2' with i and k € Z [7].

The resulting WT using this form is known as the
wavelet series decomposition (WSD). This
remains continuous while time-scale parameters
become discrete.

The discrete WT (DWT) is the wavelet transform
of a discretized signal x(n) with discetized time-
scale parameters. It is mainly related to the
multiresolution analysis (MRA) concept.

3.5- Applications of the wavelet transform

The wavelet analysis is a powerful technique that
has been exploited in different applications of the
signal processing world. It is an efficient tool to
analyze the non-stationary signals and those
representing transients. It is applied to several
types of signals : seismic, biomedical, speech,
images...[1, 2, 8]. Generally, the CWT is suited to
signal analysis , while its semi-discrete and full
discrete versions (WSD and DWT) are mainly
used for signal coding applications including
multiresolution analysis, compression, coding-
decoding...

4- RESULTS AND DISCUSSION

We have applied both the FT and CWT separately
to some different types of signals, showing each a
particular feature, in order to evaluate the
efficiency of the CWT versus the FT.

We have chosen three cases of signals that are :
the first one representing a discontinuity and a
sharp transient; the second case represents an
original signal and its shifted version in time;
while the third case is a superposition of two
linear chirp functions of the form f{t)= exp(jme< t?)
+ exp(jTee,t?)

Figures 4, 5 ,and 6 show the results of applying
the CFT and CWT to the three cases denoted
respectively. In each figure (4, 5, and 6) we show
three signals : the first one at the top (a) shows the
temporal representation of the studied signal, the

second one in the middle (b) shows the spectral
representation of the signal using the FFT
command [9], while the third one at the bottom
(c) shows the time-scale analysis of the signals by
applying the CWT command.

Figure 4 : Application of the CFT (middle) and
CWT (bottom) to transient signal (top)
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Figure 5 : Application of the CFT (middle) and
the CWT (middle) to the shifted signal (top)
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Figure 6 : Application of the CFT (middle) and
the CWT (middle) to the chirp signal (top)

For the first case, the CWT picks up obviously the
discontinuity at the temporal sample 150 and the
sharp transient at the temporal sample 210 while
the CFT fails to show these features; this is due to
the global time localization of the FT. In the
second case the CFT shows no difference between
the two spectrums; this can be deduced easily
from the spectrum expression of each signals that
is : |exp(j2nfie).S(0) | =18(f) |; while the CWT
detects clearly the shift value since the CWT of a
shifted signal is CWT(a, b- to).

Let us come back to the third case, the signals are
of the form A(t).exp(j®(t)) known as the phase
modulated signals; a type of signals whose spectra
change with time [10, 11]. The first derivative of
the phase ®(t) represents the instantaneous
frequency. In this case, the instantaneous
frequencies are o<t and o<,t where the slope o; is
called the sweep rate. We have chosen o<; and o<,
with the values of 250 and 50 respectively.

The CWT, by using the Morlet wavelet function,
can distinguish obviously the two slopes whereas
the CFT shows a meaningless spectrum. This is
explained by examining the FT expression of the
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chirp function, of the general form exp(jme<t?),
that is equal to

(jo<) exp(-jnf¥/oc) where the CFT is a
superposition of sinusoid functions of frequencies
of {/20¢; and f/20<; and amplitudes of (e<;)"* and
(s<2) " respectively.

6- CONCLUSION

We have presented in this paper an overview of
the Wavelet analysis, where we have concentrated
our study on the continuous Wavelet transform
(CWT) case. The basis upon which we attempt to
illustrate the CWT was the Fourier transform.
Different criteria® have been discussed to
distinguish between the two techniques; we have
emphasized the time-frequency resolution role. It
has been shown that the CWT provides a better
performance regarded to the FT for analyzing the
non-stationary signals or the time-varying spectra
signals and those representing abrupt changes or
discontinuities or some shift in time domain, the
situations encountered frequently in practice. The
main advantage of the CWT is the changed time-
scale (time-frequency) information cells sizes
depending on the time-frequency localization of
the searched information. We have seen that the
Wavelet theory is not based upon a specific
wavelet function, it deals with any function that
satisfies  the admissibility and regularity
conditions. We have tried to view the CWT from
different angles : pure and applied mathematics,
signal processing theory, engineering... The
wavelet theory is based on a set of contributions
and works of different researchers and scientists
in several fields, developed mainly since the
beginning of the century and exploded since the
80’s. the wavelet theory is applied to different
fields of the signal processing world. It is really a
rich domain of research that seems to be at its
youth.
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