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Résumé

Dans cet article, les vibrations de flexion d'un rotor multi-disques sont considérées. L'analyse est effectuée pour le rotor avec les
conditions aux limites appuyée-appuyée et appuyée-libre.

Celle-ci est faite dans le cas dissymétrique non amorti ou les vitesses critiques et les réponses aux forces synchrones et asynchrones

sont déterminées et comparées.

Mots clés : Vibrations, rotordynamics, flexible rotor, boundary conditions, critical speed.

Abstract

In this paper the flexural vibrations of a multi-disk rotor is considered. The analysis is made for the rotor when it is simply-
simply supported and when it is free-simply supported.

This is done for the asymmetric undamped case where critical speeds and responses to synchronous and asynchronous forces are
determined and compared.

Key words : Vibrations, rotordynamics, flexible rotor, boundary conditions, critical speed.
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Rotating machinery, such as turbines, pumps, generators
and fans, play an important role in many different
industries where they are considered among the
masterpieces in the mechanisms [1,2]. Unfortunately, they
are sources of vibrations that involve the phenomena of the
fatigue of their materials as well as some bad comfort
qualities, in addition to the resonance phenomenon that
leads to disasters if it is not avoided. To ensure a good
running it is, therefore, necessary to get a precise
knowledge of the vibratory behavior of the rotating parts.
The main point of the problem lies in the determination of
the critical speeds.

In a previous work [3,4], the study on the vibration
dynamic behavior of a flexible mono rotor in the case
where it is symmetric was considered. The model chosen
was of Lalanne and Ferraris [5] with different boundary
conditions. The obtained results led to markedly different
critical speeds and modes of vibration. In this work the
same method has been followed but in an asymmetric case
and for a rotor with different number of discs.

1. EQUATIONS OF MOTION

The model of rotor considered in this work is
represented in figure 1. The study of its flexural vibrations
is made for the cases where it is simply-simply supported
and free-simply supported to see the effect of the boundary
conditions on the modes of vibration and the critical
rotating speeds. For a better comparison, the work is made
for the rotor when it is with just with one disc, with two
discs and with three discs.

The caracteristics of the rotor, with the positions of the
discs and bearings taken from the origin the inertial frame,
are given as folows:

Shaft: Length L=1.3 m, cross section radius r- 0.05m,
density p=7800kg/m?, Young’s modulus

E=2.10"'N/m? and Poisson’s coefficient v=0.3.

Discl: Inner radius r=0.05 m, outer radius r;=0.12 m,
thickness h;= 0.05m, density p=7800kg/m* and position
1,=0.45 m.

Disc2: Inner radius r=0.05 m, outer radius r,=0.20 m,
thickness h,=0.05 m, density p=7800kg/m* and position
13=0.65 m.

Disc3: Inner radius r=0.05 m, outer radius r;=0.20 m,
thickness h3=0.06 m, density p=7800kg/m® and position 14=
0.85m.

Bearing (1): Position 1;=0.2 m, k=5 107 N/m and k=7 107
N/m.

Bearing (2): Position 1s=1.1 m, kw=510"7 N/m
k=7 107 N/m.

Mass imbalance (1): mp; = 8.8.107 kg and distance from the
shaft axis d;=0.12m.

Mass imbalance (2): mp= 3.34.10* kg and distance from
the shaft axis d>=0. 20m.

From these data we obtain the physical quantities:

Shaft: Cross-section s=7.85.10m? and diametral moment
of inertia I= 4.906.10-m*.

and
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Discl: Mass Mg =14.57kg and moments of inertia Igxi=
I4,1=0.06459kg m?, 14,1=0.123kgm>.

Disc2: Mass Mg=45.92kg and moments of inertia Igxo=
Lao= 0.497kgm?, 14,,=0.9758kgm?.

Disc3: Mass Mg3=55.107kg and moments of inertia Igx3=
Idz3: 0.602kgm2, Idy3: 1.1 71kgm2.

Figure 1 : Considered Rotating Model

The analysis of the flexural vibrations of the rotor is
carried out by modeling based on the Rayleigh-Ritz method
which is characterized by the substitution by approximation
functions of the displacements u and w in the x and z
directions respectively:

u(y, t) = f(y)q,(0=f(y)q, (M

and
w(y, )=1(y)q, ()=1(y)q, ()

where q; and qq are the generalized independent coordinates
and f(y) is the displacement function which is taken for the
first mode of a beam in flexion with a constant cross-
section. It is given by:

For simply-simply supported case:

= 1 3
f(y)=BlsinB_y | 3)
where : Bl =m.
For free-simply supported case,

f(y)=Bl[sin B,y +ot, sh,y] (4)
where: o, = sinp, L and PB.L =3.9266.

shp, L

B is a constant (taken equal to 1).

Consequently the expressions of the kinetic and stain
energies (T and U) can be obtained.

The total kinetic energy of the system is:

T=Ts+Tq+Ts (5)

Where T, Tq and Ty, are the kinetic energy of the shaft,
the masses unbalance and the discs respectively and which
are given by [3] :
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| PP
T, = —ps(@; +a3)[ > (y)dy
2 0 (6)
1 L L
+5PIa; + a) [ g* ()dy —2p10q,q, [ g”ydy
0 0
Ta=TaitTax+Tas (7)

with :

__mtra rot
le - le +le

| Ly
EMdlfz (12)((112 +q§)

1 | .
+51dx1g2(12)(qf +q§)+51dy192 -1d,g*(1,)q,9,2

_ mtra rot
Td2 _Td2 +Td2

| .
E Mdzf2 (1 )(Ch2 "‘q;)

1 o 1 .
+Eldng2 (13)(q12 +q§ ) +E IdyzQz _Idy2g2 (13)q1q2Q
and

_ mtra rot
Ty =Ty + T

1 o
= 2Md3f2(14)(q12 +43)

1 ) . 1 )
+51dx3g2(14)(qf +q§)+51dy392 -1d,58%(1,)4,9,2
To=To1+Tw2 (8)

with

T,, =m,,d,Qf(1,)(q, cosQt —q, sinQt)

and

T, =m,,d,Qf(1,)(q, cosQt —q, sinQt)
The total strain energy is that of the shaft and it is
given by:

El f
Ua=—>(qj +a) | h*(y)dy 9
0
d*f(y)
where:  h(y) = dyz

The total virtual work due to the stiffness of the bearings is:
oW :_kxxfz (1,)q,3q, 'kzzfz (1)4,8q, - kxxfz (1)q,8q, 'kzzf2 (15)9,5q,
(10

Following the procedure made by Lallane and Ferrari,
the equations of motion are deducted using Lagrange
equations for the dissymmetric model.

In the simply-simply supported case,

- Rotor with one disc:
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52.7006j, —0.8269Q4, +86.21610°q, =9.78910° Q’sinOt
52.7006, +0.8269Qq, +99.486710°q, = 9.78910°Q’cosOt

(11)

- Rotor with two discs:

{

- Rotor with three discs:

{

In the free-simply supported case,

85.14d, —2.91Qq, +86.21610°q, =9.78910° Q’sinQt
85.144, +2.91Q4q, +99.486710°q, =9.78910° Q>cosQt

(12)

98.1264, —14.076Q4q, +86.21610°q, =3.7199107° Q’sinQ2t
98.1264, +14.076Qq, +99.486710°q, =3.719910° Q*cosOt

(13)

- Rotor with one disc:
46.7544, —0.4793Q4, +43.35810°q, = 9.347710° QsinOt
{46.754&12 +0.4793Q4, +52.01510°q, = 9.347710° Q2cosOt
(14)
- Rotor with two discs:

{

111.05644, —35.6207Q4, +43.35810°q, =9.347710°Q’sinQt
111.0564, +35.6207Q4, +52.01510°q, =9.347710°Q cosQt

(15)

- Rotor with three discs:
155.06244, —37.0897Qq, + 43.358106ql =1.0017410°Q%sinOt
155.06244, +37.0897Qq, + 52.015106q2 =1.0017410°Q%cosQt

(16)

Any of the above systems of equations can be put in the
form

mg, —aQq, +k,q, = CQ%sinQt (17)
mg, +aQq, +k,q, = CQ’cosQt
or in the matrix form:
m0q1+QO—a ql_'_kl 0 a | _ ,| sinQt
0 m|| g, a 0]4q, 0 k,]|lq, cosQt
(18)

2. NATURAL FREQUENCIES AND EIGENMODES

The natural frequencies are found by solving the
homogeneous system of equations (17) i.e the system
without second member. Since this one is linear the
solutions have the following forms:

{qlh =A, cos(ot+¢,) (19)
d,, = A, cos(t+¢,)
These can be transformed in a complex form as:

(20)

q, =A, expjot
q,, =A,expjot

with A; = A expjo, and A, =A,expjo,.
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By substitution in the homogenous complex system we get:

mglh —anzh +k1 glh =0
mQZh +anlh +k2g2h =0
—mo?

e I H

This represents a linear system of equations with two

unknown A, And

discussed for the
determinant =0.

2

Or in the matrix form
—jaQa

k, —mw?

A, with a parameter ® which is
non-trivial case that corresponds to

That is:
det=| k, —mw® —jaQa |=0 (23)
jaQa k, —mo’
or: mo-(kimt+tkm+aZQ®)?+kika=0 (24)

We remark that when Q = 0 (rotor at rest), the solutions
of the (24) are equal to:

®,, =+k,/m (25)
and :
®,, =+/k,/m (26)

On the other hand when Q # 0 (rotating rotor), the bi-
squared equation has a positive discriminant which means
that it has two positive real values for o given by:

2 2 2092 2 2 212\
o = Q0 On 22 o oy 2N L n 0 (27)
2 2 2m 2 2 2m
and
212 22?2
o= Qo On B oy o 2R L. (28)
2 2 2m 2 2 2m
We can find that:
W) < ®))< 0y, < O, (29

There are then two modes of vibration for each of the
generalized coordinates qin and qon corresponding to the
two values ®; and w;,

i) For the first mode (@ = @1), we have:

Ay _ jaQo, _ jaQm, = (30)
A, k —mo m(o,—o)
That gives: Aj1=Az and ©21= Q11 - /2
Hence :
Qi = A, cos(@,t+¢;))
and

Qo = Ay cos(@t+¢,) = A, sin(w t+¢,,) (Gl)
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Then,
u(y,8) =,,,f(y) = A, cos(@, t+,,)[sinp, y +c.,shp, y]
(32)
and
w(y,t) =q,,,f(y) =A,, sin(w, t + ¢11)[Sin[3ny + anSthY]
(33)
ii) For the second mode (® = @2), we have:
élz — jaQ(D22 — jafz(’)zz :—j (34)
A, k —mo;, m(o;-n)
That gives: A=Az et 0= @i+ T/2
Hence:
Qin2 = A12 COS((DZ‘[ + ¢12)
and
9Qan =A22 COS((th+(I)22) =_A12 Sin(®2t+¢1z) (35)

Then,

u(y,t) = q,,f(y) = A, cos(@,t +,,)[sinB, y + o1, shp, y| (36)
And
W(Y,1) = qy,f(y) = Ay, cos(@,t +¢,, [Sinﬁny + anSthY] (37)

As A, is different from A,, the orbits described by the
rotor are ellipses with an inverse precession for the first
mode and a direct precession for second one.

3. CAMPBELL DIAGRAM

The characteristic equation for each considered case is
obtained from the corresponding system of equations (11)
to (16). It allows having the frequencies at rest and the
frequencies in rotation.

In Campbell Diagram (figures 2 and 3), the functions
®1=m1(Q) et @ = x(Q) are represented cut by the straight
lines @w=Q (the synchronous case) and ® sQ (an
asynchronous case with s= 0.5) to get the intersection
points A and B for the first and, C and D for the second.

The values of the frequencies corresponding for these

points are obtained using ® = sQ in (24), that is:
s?(s’m? —a?)Q* —m(k, +k,)s’Q* +k,k, =0 (38)

From this we find the critical value Q. for the cases s=1
and s=0.5.

In the simply-simply supported case,
- Rotor with one disc :

o' —(20.398.10° +0.2297Q%)o> +2.25510"° = 0 (39)

0, =k, /m=962.997rd/s

and ®,,=+k, /m=1057.763 rd/s (40)

o, =\/10.199105 +2.45610°Q° 7\/(10.199105 +2.45610°Q7) ~1.0317 10"
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A: Q1 =565.3561d/s ; B: Q»=798.5135 rd/s,

o, :\/10.199‘105+2.45610’3Qz+\/(10.199105 +245610°Q° ~1.031710"
C: Q1=1017.45rd/s ; D: Q:2=2191.33rd/s.

(40) . .
Az 00=958 1d/s ; B: 02 =050.954 rd/s, - Rotor with three discs:

C: Q1 =1812.974 rd/s ; D: Q;=2192.32 rd/s. " —(61.50610" +13.75610*°Q*)w> +2.255.10° =0 (45)

0, =k, /m=5287871d/s and o, =k, /m=5791761d/s (46)

- Rotor with two discs :

o' —(8.58710° +12.6810°Q*)w* +2.255 10" =0 (42)

o, :\/30.753110“ +2.86107Q° —\/(30.7531104 +2.86107Q°  ~2.344910"

0, =k, /m=624.831rd/sand @, =k /m=684372 rd/s (43)
0o oo co2:\/30.753110“+2.8610’2§22+\/(30.753110“+2.86.10’292)z—2.3449101°

o = \/42938105 +5.1438107°0Q° - \/(4.2938105 +5.143810°Q° f ~1.82810" 47)
: - - — = A1 Q1 =492.917 rd/s ; B: Q,=639.857 rd/s,
o, :\/4‘293810 +5.14381072Q +\/(4.293810 +5.143810° 0 ~1.82810 C: Q01 =906.314 rd/s : D: Qo =1772.77rds.
(44)
2500 , | , | 2500 , , , ,
2000 - O - 2000 oCy -
1500 — — 1500 _
B D
1000 = 7 s ] 1000 = /B @, D _|
A L C A > =
500 |- _ 500 - i
=522 ©=01/2
| 1 | 1
500 1000 1500 2000 2500 500 1000 1500 2000 2500
Q (rd/s) €2 (rd's)
Figure 2(a) : Rotor with one disc, simply-simply supported case Figure 3(a) : Rotor with one disc, free-simply supported case
2500 T T I T 2500 T T T T
2000[- o) - 2000+ ®=0 ]
L . 1500 | .
1500 5 B ®, D
1000 < -
1000+ _
B A @ c
00 @=L22 s00 i
B N @=£22
/A C @,
| | | |
5C|!0 ICIFOO 15|00 ZOIOO 200 1000 1500 =000 2200
2500
Q rd/s) €2 (rd/s)

Figure 2(b) : Rotor with two discs, simply-simply supported case

Figure 3(b) : Rotor with two discs, free-simply supported case

2500 ; : : ; 2500 . . . .
2000 | =01 m 20001 o= b
1500 [ . 1500 i
) B o D
1000 B @ _| 1000 rd _|
D A @, (3
500 A/ | 00 - _|
@ o=£12
/ c I I | I 1 I 1
500 1000 1500 2000 2300 S00 1000 1500 2000 2500
22 (rd/s) £2 (rd's)

Figure 2(c) : Rotor with three discs, simply-simply supported

case

Figure 3(c) : Rotor with three discs, free-simply supported case
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In the free-simply supported case, equations (17) i.e the system with second member. For this

. . ne, the solutions of th tem may have the form:
- Rotor with one disc: one, the sotutions ot the syste y have the 1o

o' —(35.23710° +2.4619107 0%’ +3.088310" =0 Gip = Ae COSQL+0,,) 57)
(48) d,, = A, cos(Qt+¢,,)

0, =k, /m=1279.0459rd/s
and 0,y =+k, /m=1373.962 rd/s (49) They can be transformed in a complex form as:

=A, expjQt
co]:\/35.237105+2.46210’4—\/(35.273105+2.46210’492)Z—3.088310'2 dip = Ser X (58)

q,, = Ac exp jOt

o, :\/35.237105 +246210%+ (3527310 +246210% 0 3.088310°
(500 with: A, =A,expjd, and A, =A,expjd,,

A1 Qe =1278.036 rd/s ; B: Q2 =1375.2168 rd/s, Their introduction in the inhomogeneous complex

C: Q¢1=2550.3034 rd/s ; D: Q2 =2757.667 rd/s. system yields:
- Rotor with two discs: . . .
) 5 o i mg -—aQq, +kq = CQ’exp j(Qt—1/2) (59)
or
®,,=+k, /m=1006299rd/s
k, -mQ’  —jaQ’? A, _ CQ? exp(—jn/2) (60)
and ®,, =k, /m=1080.975 rd/s (52) jaQ®  k,-mQ’ || A, cQ’

o, =\/10.9057105+5.84110"‘—\/(10.9057105+5.84110"‘QZ)2—1.183271012 This last system of equations represents a linear system
with two unknowns A, et A_, that depend on a

, :\/10.9057105 +5.841107 +\/(10.9057105 +5.84110*07) ~1.1832710°  parameter Q. The determinant method gives:
53 _
(53) _ CQ*(k,-mQ*)e ™ +jaCQ*

o RO cQ’  k,-mQ?
A ©0=1002. 69 rdis : B: 0 =1085.49 rds, A= ek, -0 0]
C: Q1 =1987. 43 rd/s ; D: Q2 =2194.46 rd/s. k, —mQ —jaQ

. 2 2
- Rotor with three discs: jaQ k, -mQ

CO2e ™2 —jaQ?

o' —(21.8110° +1.16810° Q%> +1.1832710> =0 (54) - —jCQ%(k, —mQ? —a0?) 61)
[k, —mOQ)(k, —mQ?) —a’Q?|
®,, =k, /m=1006299rd/s

and ®,, =+/k, /m=1080.975 rd/s (55) An=

k, —mQ* CQ%e ™2
jaQ? co?
k, —mQ*  —jaQ?

jaQ?’ k, —mQ?

— CQ*(k, —-mQ?)+jaCQe ™
i, —mQ?)(k, -mQ?) -a’Q?]

o =J10.9057105 +5.84110‘4—\/(10.9057105+5.84110’4£22)Z—1.1832710‘2

_CQ(k, ~mQ? —aQ?) 62)
o, :\/10.9057105 +5.84110’4+\/(10.9057105 +584110°0"f ~1.1832710” [k, -mQ*)(k, -mQ?) —a’Q’]

(56)  From these relations, we obtain:
A: Q1=900. 89 rd/s ; B: Q,,=1058. 6 rd/s, [k2 —(m+a)Q> ]CQZ
C: Q1 =1705. 27 rd/s; D: Q2=2311.056 rd/s. o= 3 > =
(k, —mQ" )k, —mQ")—a"Q

and (63)
4. RESPONSE TO A SYNCHRONOUS FORCE lkl —(m+ a)szQ2

2 = 2 2 24
When considering the excitation force due to the mass- (k, —mQ7)(k, —mQ")—-a"Q
unbalance, the steady state solution which is the particular

solution is found by solving the inhomogencous system of ~ AISO Per=-w2 and o2=0

20
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So we can write:

qip = Ae1sinQdt and  qop = A2 cosQt (64)

As A.i et A are different, the orbits described by the
rotor are ellipses. The expressions of the critical speeds
come from the denominator of the equation (62) when it is
equal to zero, that is:

(m> —a”>)Q* —m(k, +k,)Q> +k k, =0 (65

We remark that this equation is similar to equation (37)
for the case where s = 1. The two critical speeds of rotation
correspond to the points A and B. However the sense of
precession is given by the product of the amplitudes.
Indeed, if Aci.Ae2 > 0 the precession is direct and if Aci.Ae
< 0 the precession is reverse.

In order to know the sign of Aci.Ae2, we have to know the
sign of the following function:

£(Q%) =k, —(m+a)Q* [k, —(m+a)Q>|  (66)
It is equal to zero for the two values of Q:

Q =k /(m+a) and Q,=k,/(m+a)

These allow having the sense of the precession for each
value of the rotational speed (see figure 4).

A .i.Aez Ay lf-'xez

e M My
RN

Direct.
precession precession precession

Inverse
precession

Q] Q2
Figure 4 : Variation of the sense of the precession

a0

For the different cases of the considered model of rotor
defined by equations (11) to (16), we have:

In the simply-simply supported case,
- Rotor with one disc:
B [486,220-4,415.10% 0 |02
© T 2185706Q" —44,59.10°Q7 +2,255.10"°
) [405.297-441510% 0’ |0
21857060 —44,59.10°Q% +2,255.10"°

(67)

- Rotor with two discs:
[486,220-1371.10° Q2 |2
Ay = 24 10 ~2 15’
110,646.10°Q" —1,059.10°Q +2,255.10
[405,297-1371.10° Q|
T 110,646.10°Q" —1,059.10°Q +2,255.10°

e2
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- Rotor with three discs:
[s21,055-1.924810° Q[
T 22,66810°Q° —1,478810°Q° +2,255.10"
[434334- 19248107 Q|02

>

_ (69)
2 22,668.10°Q% —1,4788.10'° Q% +2,255.10
In the free-simply supported case,
- Rotor with one disc:
~ [073875-51786.10% 0% 0>
° T 270381Q% —96,5765.10°Q +8,577.10'
~ 8439685178610 0% [0 (70)
© 7 270381Q% —96,5765.10°Q° +8,577.10"°
- Rotor with two discs:
[73875-8.619.10%Q* |0
T 72403520% —1,581.10°Q7 +8,577.10"°
N [843968-8.619.107 0 |0 )
" 7240352Q% —1,581.10° Q% +8,577.10"
- Rotor with three discs:
[37008- 4173810 Q|0
Ay = 4 10 ~2 15
9430,576Q* —1,822.10"°Q* +8,577.10
-3 2 2
[3207,149—4,1738.10 Q ]Q 72)

2 9430576Q* —1,822.10"°Q +8,577.10"

Ae; and Ae; are represented in absolute values on figure
5 and 6, where we see that the phenomenon of resonance
occurs for two critical values unlike the symmetric case
where it occurs for a single value. On the other hand, when
Q) >> 0 (very positive), the amplitudes A¢; et A will be
equal and tend to a constant value equals to: 9.8338 10”'m.

5. REPONSE TO AN ASYNCHRONOUS FORCE

The rotor can also be excited by an
asynchronous force during its operation. It is a
force with a constant amplitude Fo and speeds sQ2
different from that of the rotor. If the force is
applied in 13 we have:

E,, =E f(l;)sinsQt = FsinsQt

and F, = F,f(l;)cossQt = FcossQt (73)
The equations to be resolved will be :
m.'c.jl — aQ?'h +k,q, = Fsins(t (74)
(68 mq, +aQq, +k,q, = Fcosst
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%104
3.5 T T T T T T
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|Ae,|

15[

031

1000 1200

0 .
200 400 600 800 1400 1600

Q (rd's)
Q1 =962.48 rd/s Q,=1055.3 rd/s

Figure 5(a) : Response to a synchronous force: rotor with one
disc, simply-simply supported case
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Figure 5(b) : Response to a synchronous force: rotor with two
discs, simply-simply supported case
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discs, simply-simply supported case
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As the precedent case, the solutions are of the form:

[kz— (ms’+ as)QZ]F
Ag =555 53 2 2
s (s m™—a’)Q"—ms~ (k, +k,)Q"+k k,

And (75)
- [k, — (mh? + as)Q? |F

A =
2 s (s'm’—a’)Q*-ms?(k, +k,)Q%+k k,
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Figure 6(a) : Response to a synchronous force: rotor with
one disc, free-simply supported case.
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Figure 6(b) : Response to a synchronous force: rotor with two
discs free-simply supported case.
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Figure 6(c) : Response to a synchronous force: rotor with three
discs free-simply supported case.

1600
Q (rd/s)

The critical speeds are given by the same equation (38) and
the orbits are described by ellipses.

q,, = A, cos(sQt+¢,,)

(76)
dyp = A, cOSEQL+¢,)

The calculations lead us to:

In the simply-simply supported case,



Flexural vibration of a multi-disk rotor with different boundary conditions
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Figure 7(b) : Response to an asynchronous force: rotor with two

discs simply-simply supported case Figure 8(b) : Response to an asynchronous force: rotor with two

discs free-simply supported case.

2x10°

. . 1.5x 10
1.8} B
| el | e
12} i 1 ]
1t |
08} .
0.6 ] 0.5} ]
0.4} 4
|Aey| —
021 |Aey| |
: N 0 J\
0 500 71000 1500 < 2000 2500 3000 0 500 1000 1500 / 2000 \2500 3000 3500 4000
Q,—906.311d/s Q—1539.143 rd/s Q (rd/s) Q,-1705.3 rd/s Q,—2311rd/s Q (rd/s)
Figure 7(c) : Response to an asynchronous force: rotor with three  Figure 8(c) : Response to an asynchronous force: rotor with three
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- Rotor with one disc:
43,358.10° — 45,574 Q*)F
A= (52015.10° —11928Q)F ’ Ae= 4 363(6Q4 26,479.10°Q* 2)255 10° 7
©136,5636Q% —11,147.10° Q> +2,255.10" 53, —26479. Mt
A (43,358.10° —11,928 Q*)F a7 - Rotor with three discs:
2™ 4 8 )2 15
- Rotor with two discs: 11 5886Q* —36,9719.10°Q* +2,255.10"
(52,015.10° — 45,574 Q*)F (43,358.10° —57,310%)F 79
1™ 3 82 15 A_= ’. ’ 7
45363602 —26,479.10°Q2" +2,255.10 27 115886Q* —36,9719.10°Q* +2,255.10"
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In the free-simply supported case,
- Rotor with one disc:
A = (99,4867.10° —13,588Q°)F ’
© 17341360 —24,466.10°Q° +8,577.10
(86,216.10° —13,588Q%)F

Ao= - s _(80)
173,4136Q0" —24,466.10°Q2° +8,577.10
- Rotor with two discs:
A= (99,4867.10° —22,74Q0°)F
e 450,9340* —39,5268.10°Q* +8,577.10"
(86,216.10° —22,74Q0°)F
Ae2: 4 2 ~2 5 (81)
450,934Q" —39,526810°Q2° +8,577.10
- Rotor with three discs:
B (99,4867.10° —31,569Q°)F
5522610 —45,555.10°0Q% +8,577.10°
86,216.10° —31,569Q%)F
(86, ’ ) (82)

2 5522610 —45,555.10°Q° +8.577.10°

The amplitudes Aci and Ae for F=1N, are represented
in figure 5 where the critical speeds are the speeds that
make the magnitude infinite and the denominator of a zero
value.

CONCLUSION

In this work we have investigated the effect of the
change in the boundary conditions on the vibration
behavior of flexible rotor. The supported-free case is
examined and compared with the supported-supported case
of Lalanne and Ferrari.
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On the one hand the results obtained by the Campbell
diagram showed a net difference of critical speeds for these
two cases.

On the other hand forces synchronous and asynchronous
responses have given separate curves where you notice for
the supported-free case of frequencies of overtones than
those of the cases supported-supported.

It gives the possibility to work with greater speeds. Also
it may be noted that playing on the boundaries conditions to
allow avoiding the critical speeds for a given rotational
speed and without changing the rotor structure.

In present work, a system of thin films deposition was
carried out and calibrated. This system is used for the
deposition technique by sol-gel associated to dip coating.

A mechanic system was controlled to dip and remove a
glass substrate in a solution at a controlled speed. Speed
variation is achieved by a frequency converter and an
automated control system circuit, the withdrawing speed is
stable above a frequency of 3.9 Hz, XRD characterization
of a thin film based ZnO has proved the reliability of the
dip coater.
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