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Résumé   

 

Un élément spécial basé sur le principe variationnel mixte de Reissner est présenté 

pour étudier la rupture interfacielle dans les bimatériaux. C’est un élément fini mixte 

bidimensionnel à 7 nœuds avec 5 nœuds déplacement et 2 nœuds contrainte. Cet élément 

assure la continuité des vecteurs déplacement et contrainte sur la partie cohérente et la 

discontinuité de celle-ci sur la partie fissurée. Cet élément d’interface est associé à la 

méthode d’extension virtuelle de fissure pour calculer le taux de restitution d’énergie. Les 

résultats obtenus, avec l’élément d’interface présenté, montrent une bonne concordance 

avec les solutions. 

Mots clés : Elément fini mixte d’interface, Interface fissurée, Taux de restitution 
d’énergie, Méthode d’extension virtuelle de fissure 

 

Abstract  

A special finite element based on Reissner’s mixed variational principle has been 

presented to study interfacial cracks in bimaterials. The present element is a 7-node two 

dimensional mixed finite element with 5 displacement nodes and 2 stress nodes. The 

mixed interface finite element ensures the continuity of stress and displacement vectors at 

the interface on the coherent part and the discontinuity of this one on the cracked part. This 

interface element was associated with the virtual crack extension method to evaluate the 

energy release rates using only one meshing by finite elements. Results obtained from the 

present mixed interface element have been shown to be in good agreement with the 

analytical solutions. 

 

Keys words :  Mixed interface finite element; Cracked interface; Energy release 
rate; Virtual crack extension  

 
 
 

  ملخص        

عقد منها  7انطلاقا من مبدأ التغيرات المختلطة لريزنر. هذا العنصر المتناهي ذو بعدين مؤلف من  في هذه الدراسة قمنا بتقديم عنصر متناهي
عقد للانسحابات و عقدتين للإجهادات. العنصر المقترح يضمن استمرار أشعة الانسحابات و الإجهادات في الجزء الملتصق و عدم الاستمرار  5

استعماله مع طريقة التمدد الافتراضي للانشقاق من أجل حساب معامل استعادة الطاقة. النتائج في الجزء المتشقق. هذا العنصر الفاصل تم 
 المتحصل عليها, باستعمال العنصر المقترح, تبين التقارب الجيد لها مع الحلول النظرية

 

 , طريقة التمدد الافتراضي للانشقاق.تناهي المختلط للفاصل, الفاصل المتشقق, معامل استعادة الطاقةالعنصر الم  :الكلمات المفتاحية
 

 

 

 

 

 

 

 

S. BOUZIANE 
H. BOUZRED  
M. GUENFOUD  

Laboratoire deGénie Civil 

et Hydraulique,  

Université Guelma,  

BP401 Guelma 24000,  

Algeria, 



S. BOUZIANE, H. BOUZRED, M. GUENFOUD 

 18 

everal disorders observed in an existing work on 

civil engineering may have their origin in local 

phenomena which reveal the weak points of this work. 

These critical zones are located, on the one hand in the 

links between materials or interfaces, on the other hand in 

singularly formed areas such as cavities, angles and cracks, 

seats of strong stress concentrations.  

In this paper, the mixed finite element method is used 

for the study interfacial cracks in bimaterials. The mixed 

variational formulation has several advantages [1-2] over 

the conventional finite element formulations (specifically 

the displacement method), including direct evaluation of 

nodal stresses along with nodal displacements; improved 

accuracy of both displacements and stresses, and adequacy 

of lower-order elements, leading to elegant grids of 

discretization. 

The mixed finite element method developed by 

Herrmann [3] for plate bending analysis has been extended 

to plane elasticity problems by Mirza and Olson [4]. An 

exhaustive literature on mixed finite element models has 

been compiled by Noor [5]. Aivazzadeh [6] developed a 

family of rectangular mixed interface element using 

Reissner’s mixed variational principle. Habib [7] presented 

various axisymmetric mixed element for studying bonded 

assemblies and laminate structure. Bichara [8] and Sarhane-

Bajbouj [9] developed mixed finite elements for one or 

multi interfaces. Wu and Lin [10] presented a two 

dimensional mixed finite element scheme based on a local 

high-order displacement model for the analysis of sandwich 

structure. Carrera [11-13] also presented various mixed 

models based on Reissner’s mixed variational principle. 

Ramtekkar and al. [14] developed a three dimensional 

mixed finite element model using the minimum potential 

energy principle. This model has been used for the analysis 

of sandwich plates [15]. Desai and Ramtekkar [16] 

presented a mixed finite element based on displacement 

theory satisfying fundamental elasticity relations. Bambole 

and Desai [17] developed a two-dimensional hybrid-

interface element based on the principle of minimum 

potential energy.  

In this work a mixed finite element model has been 

presented using Reissner’s mixed variational principle. The 

model takes into account the continuity of the interface on 

the coherent part (mechanical and geometrical continuity) 

and the discontinuity of this one on the cracked part (edge 

effect).  This mixed finite element was developed by 

Bouzerd [18] using a direct formulation: the shape 

functions of the displacement and stress fields are built 

directly starting from the real configuration of the element 

in a physical (x, y) plane.  

In the present paper, this element was reformulated 

starting from a parent element in a natural (ξ,η) plane. This 

formulation presents, in addition to the simplification of 

calculations, the enormous advantage of modelling the 

different types of cracks with various orientations. This 

interface element was associated with the virtual crack 

extension method to evaluate the energy release rates using 

only one meshing by finite elements. 

The accuracy of the element has been evaluated by 

comparing the numerical solution with an available 

analytical solution or numerical ones obtained from others 

finite elements.    

 

1. FORMULATION OF THE INTERFACE ELEMENT 
 

The stages of construction of the proposed interface 

element are schematized on figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 : Stages of construction of RMQ-7 element 

 

The RMQ-7 (Reissner Modified Quadrilateral) element 

is a quadrilateral mixed element with 7 nodes and 14 

degrees of freedom [18]. Three of its sides are compatible 

with linear traditional elements and present a displacement 

node at each corner. The fourth side, in addition to its two 

displacement nodes of corner (node 1 and node 2), offers 

three additional nodes: a median node (node 5) and two 

intermediate nodes in the medium on each half-side (nodes 

6 and 7), introducing the components of the stress vector 

along the interface.  

The Continuity of the displacement and stress vectors 

can be taken into account on the level on this particular 

side, which must be placed along the interface.  In the 

cracked structures, the median node is associated to the 

point of crack; the two static nodes on both sides make it 

possible to meet the two essential requirements of such a 

situation, which are the free edge condition on the lips of 

the crack and the conditions of continuity along the 

coherent part. 

At the beginning, we start with Reissner’s mixed 

formulation with all displacements and all stresses like 

nodal variables to build the interface mixed element. There 

are thus surplus nodal variables. This formulation imposes a 

too strong continuity, indeed the stress σ11 figure among the 

variables considered in the Reissner variational functional, 

but does not appear among the interface stresses (separation 

stress σ22 and shear stress σ12); therefore we will eliminate 

this stress (σ11) in the formulation of the interface element. 
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1.1. Construction of the parent element RMQ-5 

The RMQ-5 element is obtained by adding a 

displacement node to the Reissner mixed element. It is a 

mixed element with 5 nodes and 22 degrees of freedom.  It 

has a side (associate with the interface) presenting three 

nodes, the medium node (displacement node) characterizes 

the bottom of the crack in the final version of the element.  

The stress nodes not having changed neither number some, 

nor in position, do the RMQ-5 and the Reissner elements 

present the same static behaviour. The stress field is 

expressed by the same shape functions. 

The element displacement component is approximated 

by : 

     qNu      (1) 

where :    5
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is the vector of nodal displacements and  N is the matrix 

of interpolation functions for displacements.       
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The shape functions are :  
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The stress field in any point is written : 

      M      (4) 

where  M  is the matrix of interpolation functions for 

stresses, and 
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  vector of nodal stresses 

The nodal approximation of the displacement and stress 

fields is expressed by :  
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where  B  is the strain-displacement transformation matrix.                                                                     

The element matrix  eK  is given by : 
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Here :              e

A

t
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      (8)                                           

where: e is the thickness,  S  is the compliance matrix and 

eA  is the element area.  

1.2. Construction of the RMQ-11 element  

The RMQ-11 element is obtained starting from the 

parent element RMQ-5 by relocalisation [19] of certain 

variables inside the element and by displacement of static 

nodal unknown of the corners towards the side itself. It is 

an element with 11 nodes and 22 degrees of freedom. The 

displacements nodes not having changed neither number 

some, nor in position, do the elements RMQ-5 and RMQ-

11 present the same shape functions.  

The approximation of the stress field according to the 

nodal variables    is : 
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where polynomial base of the element is : 

     1,P  

and  nP  is the nodal matrix. 

In the configuration of figure 1, the shape functions, 

used to approximate 11 , are given by :   
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The shape functions used to evaluate 22 and 12  are given 

as follows: 
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The element stiffness matrix is written in the form 

given by the expressions (6), (7) and (8). This matrix can 

be evaluated by Gauss numerical integration scheme, with 

four points (2x2) on the element.  

1.3 Construction of the RMQ-7 element 

The four intern’s nodes of RMQ-11 element who do 

not take part in the assembly contain degrees of freedom 

and inappropriate surplus variables with the interface and 

the free edge to supplement the set of variables in the 

polynomial interpolation of the stress field; what has as a 

consequence of many nodes and variable in kind. In 

practice these nodes complicate the operation of setting in 

data, and increase the size half-width of band during the 

assembly, which causes an increase of the computing time. 

The method used for condensation of the internal degrees 

of freedom to contour is related to the general concept of 

reduction of the size of an equations system per 

elimination of a certain number of variables. Gallagher 

[20] used this type of procedure in structural analysis. The 

static condensation procedure leads to the following 

reduced elementary matrix : 
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Here i indicate the intern static nodal variables and c the 

static nodal variable of contour. 

 

2. VIRTUAL CRACK EXTENSION METHOD 
 

The virtual crack extension method proposed by Parks 

[21] can calculate the energy release rate as: 

           
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where U is the potential energy of the system, a is the 

length of a crack, a  is the length of the virtual crack 

extension, and iK  and  iu  are the difference of the 

stiffness matrixes and the nodal displacements vectors of 

the elements i, surrounding a crack tip at the virtual at the 

virtual crack extension, respectively. 

 

3. NUMERICAL EXAMPLES  
 

3.1. Example 1.  

In order to evaluate the validity and the credibility of the 

present element, a study of the convergence on a cantilever 

beam in flexion is carried out. A cantilever beam, with 

dimensions and loading as shown in figure 2, is subjected to 

two types of loading. The first type of loading corresponds 

to a uniform distribution of transversal load distributed on 

the end of the beam by respecting energy equivalence.  

 

 

 

 

 

 

 

 
Figure 2 : Test of cantilever beam – Mesh 

 

The second type of loading corresponds to a pure test of 

flexion. This problem has been solved by the present mixed 

element (for various meshes) to compare our result with the 

literature result, so as to gain additional confidence in the 

workability of the present element. Table 1 presents a 

comparison of deflections at the point A.  

 
Table 1 : Comparison of deflection in a cantilever problem solved 

by various elements 

Table 1 shows the good results obtained with the 

present mixed element compared with those of the 

analytical solution. Indeed, with a number of degrees of 

freedom definitely lower than those retained in the other 

comparative elements, the excellent results are obtained. 

To see the convergence rapidity of the deflection at 

point A, several meshes are used.  All the results obtained 

are reported in table 2 according to the number of elements 

and degrees of freedom. 

 
Table 2 : Deflection in a cantilever problem solved by various 

meshes 

 

Figure 3 represents the convergence of the deflection. It 

is noted that the interface mixed element converges very 

quickly for a number relatively low of degrees of freedom. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3 :  Convergence of deflection in a cantilever beam 

 

3.2. Example 2.   

Simply supported sandwich beam has been considered. 

This beam presents three isotropic layers and presenting 

coherent interfaces. A sandwich beam, with dimensions and 

loading as shown in figure 4, is subjected to uniform load 

and the interest is primarily centered on the study of 

transverse shear stresses and the deflection.   

 

 

 

 

 

 

 

 

 

  

Figure 4 :   Sandwich beam analyzed 

Element type 
Number of degrees 

of freedom 

Deflection at point A (mm) 

Loading 1 Loading 2 

Displacement (4 
nodes)  

728 0.961 0.922 

Reissner(4 nodes) 1431 1.023 0.998 

Quad-1 Bichara [8] 498 1.029 1.000 

Present mixed 

element 
150 1.000 0.976 

Classical theory - 1.000 1.000 

Timoshenko theory - 1.030 1.000 
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Number of degrees 

of freedom 

Deflection at point  A (mm) 

Loading 1 Loading 2 

4 30 0.501 0.577 

10 66 0.913 0.901 
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22 138 0.999 0.975 

24 150 1.000 0.976 
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The material properties of the face sheet and core 

material are : 

- face sheet material (aluminium) (resin epoxy) :  

Ep = 70000 MPa,  νp=0,34 

- core material :  

Ec = 3400 MPa,  νc=0,34 

 

To see the convergence rapidity of the transverse shear 

and deflection several meshes are used. Results obtained 

trough the present mixed element for various numbers of 

degrees of freedom are tabulated in tables 3 and 4 where 

they have been compared with the elastic solutions given by 

Pagano [22]. Table 3 shows the deflection values obtained 

at x=L/2 according to the number of degrees of freedom. 

Variation of transverse shear at x = L/4 has been presented 

in table 4. It can be seen that the results from the present 

mixed element are in very good agreement with the 

elasticity solution [22]. 

 
Table 3 : Deflection in a sandwich beam at x=L/2 solved by 

various meshes 

Element type 
Number of degree of 

freedom 

Deflection 

u2 (mm) 

Present mixed 

element 

32 -0.105 

98 -0.200 

402 -0.209 

Pagano [22] - -0.208 

 
Table 4 :  Transverse shear in a sandwich beam at x=L/4 solved 

by various meshes 

Element type 

Number of 

degree of 

freedom 

(MPa) 12 Transverse  shear 

y = - hc/2 y = 0 y =  hc/2 

Present mixed 

element 

32 -3.026 - -3.001 

98 -3.135 - -3.258 

402 -3.197 -3.314 -3.184 

Pagano [22] - -3.159 -3.431 -3.158 

Figures 5 and 6 show the variation of the deflection and 

the transverse shear respectively with the number of 

degrees of freedom. It appears that the mixed interface 

element converges very quickly for a number relatively low 

of degrees of freedom. 

 

 

 

 

 
 

 

 

 

 

 

 
Figure 5 :  Convergence of deflection at x = L/2 

 

3.3. Example 3.   

In this example, we analyzed a dissimilar square plate with 

a center crack of length 2a = 2mm in the interface plan 

between two isotropic materials subjected to tensile stress 

in the two directions as shown in figure 7. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 6 :  Convergence of transverse shear at x=L/4 (y =- hc/2) 

 

We include the same geometrical and mechanical data 

of the reference [23]. 

In this example, the present element is associated to the 

virtual crack extension method to evaluate the energy 

release rate G. During numerical calculation, the choice of 

the crack length variation Δa is very important. To see the 

influence of this variation on the precision of calculation, 

we considered only one mesh with 50 elements and 286 

degrees of freedom and we varied the extension in the 

interval
500

1

10

1

a

a
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 . 

 

 

 

 

 

 

 

 

 

 
Figure 7 :  A center crack in a dissimilar square plate 

 

Results obtained with present interface element are 

compared with the values of the analytical solution [24] and 

the values of the numerical modelling of Lin and Mar [23].  

These authors gave like results of their studies the stress 

intensity factors KI and KII from which we evaluated the 

energy release rate. Table 5 gives the values obtained 

according to E1/ E2. 

 

Table 5 :  Energy release rate of center interface crack between 

dissimilar materials 

 

The results obtained confirm the importance of the 

choice of the extension and the validation of the present 

element for the cracked structure. 

 

E1/ E2 

Energy release rate G(N/mm) 

Rice and Sih [24] Lin and Mar [23] 
Present mixed 

element 

1 3.14 3.20 2.43 
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10 16.43 16.67 17.36 
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CONCLUSION 
 

The mixed finite element method is used to derive a 

special interface element. The mixed variational 

formulation proves to be a very accurate method of 

numerical analysis for the evaluation of displacements and 

stresses of boundary value problem.  

The present mixed element was built in order to answer 

as well as possible the conditions of continuity of 

displacement and stress vectors in the coherent part, and of 

discontinuity of displacements and effect edge on the 

cracked part.  In the formulation of this element, we used 

Reissner’s mixed variational principle to build the parent 

element.  The mixed interface finite element is obtained by 

successively exploiting the technique of relocalisation and 

the static condensation procedure. The formulation starting 

from a parent element in a natural plane present the 

enormous advantage of modelling different types of cracks 

with various orientations. This interface element was 

associated with the virtual crack extension method to 

evaluate the energy release rates using only one meshing by 

finite elements. Economy of analysis is achieved when the 

present elements are included with a relatively smaller 

mesh and present sufficiently accurate results. The accuracy 

of the element has been evaluated by comparing the 

numerical solution with an available analytical solution or 

numerical ones obtained from others finite elements. 

Results obtained from the present mixed interface element 

have been shown to be in good agreement with the 

analytical solutions. 
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