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Abstract
In this work one interests a method for the identification of a part of the boundary in a parabolic equation
(Navier-Stokes equations). By the means of the controllability of an adjoint system one has to identify this part while

basing on an observation made on part of the boundary known.
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Résumé :
Dans ce travail on intéresse a identifier une partie de la frontiere d'un domaine sur lequel on a défini une
équation de Navier-Stokes. Par le biais de la controlabilité d'un systeme adjoint on a pour identifier cette partie en se

basant sur une observation faite sur une partie de la frontiére supposée connue.

Mots clés: Systeme évolutif, Contrélabilité faible, Observabilité, Opérateur, Sentinelle ponctuelle.
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1. Construction of the sentinel punctual
(Definition, existence and uniqueness of the
sentinel)

Let N € {2;3}, Q is a bounded open in [ " with
boundary oQ=T,UD,,
ILND, =9 such that D, unknown part. Let

smooth with
O= {b} < Q, considered as an observatory. T >0
is fixed, we then denote by
Q=0x]0,T[;Z, =I,x[0,T[;Z, =D, x]0,T|
It is well known that the following Navier-Stokes system
y'—Ay+yVy+Vp=0in Q 1)
And, divy=0in Q; y=g on Z,; y=0 on X;
y(O) =0inQ
Where Y is flow velocity, and p is the pressure.
We define Q_ open

Q. :(F— DO)U D,.
Where D_ is defined from D, like the place of the points
={b+ra(b)v(b),beDo} )

We denote by v the outer normal onI", 7 small real

“neighbor’” of () of boundary

parameter, and @ isa C' on D, with |a(b)| <la=0
ondD,.

We then denote by

Q, =Q,x]0,T[;Z, =(I'-D,)x]0,T|; ;

2, =D, x]0,T[ ©

Let y= y(b,t; T) be the solution of
y'—=Ay+yVy+Vp=0in Q, (4)

And, divy=0in Q; y=g on X;; y=0 on Z_;
y(0)=0 in Q
We suppose that (4) has a unique solution denoted by

y(7)=

Lions which is an other attempt and brings better answer to
question (q), as we will explain now:

For a control function in u eU = L2 (]O,T[), we define
the functional

T
S(A,7)=] u(2)y(bt;7)dt 5)

Then, firstly, the problem consists in looking for U such that
the following conditions are satisfied

0

=5(.)

T
(6)
Secondly, U of minimal normin U ,i.e

y(b,t; r) is some relevant space. The question is

< &; with &> 0 sufficiently small parameter
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||u (ﬂ)”u = minimum

(7
Let S be the real function defined by (5). S is said to be a

punctual sentinel if there exists U €U such that properties
(6)-(7) are valid.

2. Equivalent controllability problem

oy

The function Yy, = 3. solves the problem
T

%yT—Ay,+V(y,®y+y®yf)+Vp, =0
in Q,

@)
: : 0
And, divy, =0inQ,; y,=0on X ;y,

=——1y(4
ov y( )
onZ,;y(0)=0inQ,
y(/l): y(b,t;l) solves (4). Thus aiS(/l,/i) data by:
T

(q) How to identification of an unknown boundary( D0 ) ?
We now consider the sentinel method of

We set Dg=Vq+Vq'and introduce the adjoint state
system associated to (8)

—%q —Aq—-Daqy(A)+Vz=ué, in Q, (10)

And, divqg=0 in Q,; q=0 on Z£,; q=0 on XZ,;
q(T)=0inQ,

Therefore, let q be the unique solution, it is well known that

qe LZ(O,T;(H;(QE))N)H
c (o,T;(L2 (@))")

Depends on U which is to be determined.
Indeed, if we multiply the first equation in (10) by Y, and we

integrate by parts over (0 T) we obtain

T
[ u(A)y, (bt) dt_—j de
Indeed from (8) we have,
T
[ u(2y. (btdt_—j de—

5 1)
[, (a2 y(2) | 2

OV.

Finally, if we define the linear continuous operator :

Zs(a)-[uy ke @
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0 aq
[« y(1) | Mgs
z;(aav y( )jév*

=Bu(4)

One has: ai S(4,4)=Bu(4)
T
This is a control problem?

Proof of: B” “’adjoint of B * is injective.
ie. ker(B")={0}.
Operator B define by

Bu:zi( 0 (4))

agy
Whose adjoint is
B'o= Zor)Z
And where XoT) denotes the characteristic function of
(0,T),

A s
ov.

( z)(t)— z(t) if te(0,T)

o) 0  otherwise

And Z be the solution of

%z—Az+sz+Vp:Oin Q, (13)

And, divz=0 in Q,; z=0 on Z;

z:—(aa—a‘/y(l)]a oz, 2(0)=0inQ,

So that from (12) and (13) we deduce :

B:U—>E=0

u—Bu ZJ‘ZA( oy (l)jav*

The equation (11) allows to rewrite (9) into
% s(2.2)=[ u(a), (b.t)dt =

or
Xor)Z= B'o

(12)

Suppose now that XomZ= B'o=0 ie.
z=0in (O,T) :

2=01n (0T). Thus (aé_av y(/l))a:O

(aaiy(/l)ja:OQa:O or %y(ﬂ)zo or

v
o=0.
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This equality must take place for any regular function & , with
|a(b)| <1, =0 on 0D, . That is equivalent to

0

ov
aﬁy(ﬂ,);ﬁO otherwise y(/1)=0 inQ,.
v

y(4)=0or 0=0.

Then we have: o =0.
Then we deduce B is injective.

ker(B*):{O} is equivalentto Im(B) =0 i.e.
Ve>0,vxell,Juel;Bu-x|<e

(v.2), =], (@2 y(2) |2 az~(c:eu),

We then obtain

(14)

a2y
ov

closed in U from (14).
and let u(r) be the solution of the following minimization
problem

N T
min E||u||U ueu, (15)

Let F and G be two functions defined as

F(u)=Z e
6(u) { 0 if

+o0  Otherwise
So that from (15) we deduce

and

B |y—ﬂ£g

minF (u)+G(Bu); ueU

Applying the duality of Fenchel and Rockafeller [7], one gets
u (T) =Bo’ (16)

and let &~ be the solution of the dual minimization problem
minF"(B'c)+G (-0); oeE (17)

with F~ and G” being the Fenchel conjugates of F and G

Suchthat F"=F and G~ defined by
G (o) =(X,c7)E + &0
Then of course (15) becomes :

By a convex duality process a control fulfilling the conditions
(6)-(7) is exhibited.

It remains to construct U (T) as the function of minimal norm

satisfying (14).
Let
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U,y ={ueU such that |BU—X|S8,XED}Then u is

a nonempty set. And convex and For any oo €[] and
o #0, one has

8—J,5UJ =(BB*0'+5—X,50')E
E

&

For o =0 onehas BB o +&— X We have

BBo —X=-¢ (19)

Since U (i) =B’c", we have Bu (ﬁ,)— X=—¢&
Thus |Bu(/1)—x| =¢

We will have that |X| > & . Eventually (19) gives

BB'o =x—¢<Bu(d)=x-¢

BB*O'*:X—5<:>QS(/1,1):X—5
or

8
Zs(44
5. 5(4.4)

3. Ause of the concept of sentinel: the identification
of the unknown boundary :

Choosing X, such that <¢g

minJ (O')z F (Z)+5O'—(X,J)E o€k (18)

Where z solves the problem (13).

For o #0 then it is supposed that |X| > & . (Otherwise,

o =0 solves of (18) < |X| <ég).

S(i,r):S(ﬂ.,/’L)+

95
T

(r-2)

The observation is Yy in pointh, for the time T . we denote

(2.4)+o(fe~ )

by VY, this observation, and for the sake of simplicity, we

suppose the existence of 7 such that

. 2
Yoo = Y (b, t;7,) =m, e L*(]0, TY)
Let S_. be the global
observation Y . .

T

S (4,7, = [ U (A)mygt
In particular for 7 =7, and so that (6) becomes

Supe (2,7.) =S (A A)+

(20)

obs information provided by the

obs

(= 2) 2 S (2 2) o(fe. )

One gets
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Sens (A:74) 1 S(A, )+ (7, —A) e +o(|z, - 4])
Choosing E = ¢? (D ) and

g(ﬂk)zﬂkﬂ=Sobs(ﬂk1fs)_s(lk'ﬂk) (21)

Where g is a mapping from E to itself obviously defined
from (21) and (5).

Let us now, present a use of the concept of sentinel applied for
give approximation of the shape of D, .

Let S (A, T) the punctual sentinel in the sense of J.L.Lions
[2]. Indeed

S(A,7)0 S(ﬂ,O)+r%S(/1,0)

Differentiating S(/l,z') with respect to 7 at the point
(/1,/1) one gets

0'(1)=-L5(A.z,)

or,
_ai;ss(z,z)_%s(z,z)

Thus
g'(TS):%S(rs,rs)—ai;sS(rs,rs)
—gs(rs,fs):—a_ars(rs,fs)

So that from (6) we deduce |g '(z, )| <e<l

Then the sequence (lk) locally converging to 7. This will
give an approximation of the shape of DTS .

we deduce the value of 7, and thus one chooses D, =D, .
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