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Abstract— In this paper, we approximately solve the 

multiple-choice multi-dimensional knapsack problem. 

We propose a mixed algorithm based on branch and 

bound method and Pareto-algebraic operations. The 

algorithm starts by an initial solution and then 

combines one-by-one groups of the problem instance 

to generate partial solutions in each iteration. Most of 

these partial solutions are discarded by Pareto 

dominance and bounding process leading at the end to 

optimality or near optimality in the case when only a 

subset of partial solutions is maintained at each step. 

Furthermore, a rounding procedure is introduced to 

improve the bounding process by generating high 

quality feasible solutions during algorithm execution. 

The performance of the proposed heuristic has been 

evaluated on several problem instances. Encouraging 

results have been obtained. 

Keywords— combinatorial optimization, heuristics, 

knapsacks, branch and bound. 

 
1  I. Introduction 

In this article, we try to propose a resolution to 

approximate the problem of multidimensional 

knapsack multiple choice (MMKP).  

 

The problem of multi bag back choice 

multidimensional MMKP is a special case of the 

general problem of the backpack, considered one 

of the combinatorial optimization problems most 

studied in recent years, because this problem has 

many practical applications [1]. 

 

The fundamental problem of the bag back to 

binary 0-1 considers element n, where each  

 

element has a value of v profit and cost of the 

proposed weight w resource. 

 

The goal is to put the items in a backpack so that 

the capacity of the backpack resources is not  

 

exceeded and the value added benefit of packaged 

items is maximized [2]. 

 

The MMKP is a variant of the complex problem of 

binary bag back 0-1, it is classified as a 

combinatorial optimization problem NP-hard [1]; 

where the items are listed in the classroom, the 

selected item will eliminate the choices of other 

objects belonging to the same class. 

 

It is applied in many forms; in industrial or 

economic real world applications [1], such as 

space management or cutting. 

 

It is a sub-problem to solve a more general 

problem. So it‘s resolution contributes to solving 

it. 

 

Formally MMKP is to maximize the objective 

function (gain) at a number of capacity constraints 

and choice constraints[3].  

 

The idea of the MMKP is to choose exactly one 

item from each class to maximize the value of 

total profit for this choice subject to resource 

constraints. Considering the decision variables xij 
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when j element of the i class is taken then it is 

equal to 1 or 0, the MMKP can be formulated in a 

linear program [4].    

 
2  II. DEFINITION OF MMKP 

PROBLEM 

 

The MMKP problem is characterized by: - A 

vector of size m said capacity or resources R = 

(R1, R2, .., Rm)  

- A set S = (S1, ..., Si, ..., Sn) to be divided into n 

disjoint classes such that for every pair (p, q) 

objects; such that: p ≠ q; p ≤ n and q ≤ n, we have 

Sp ∩ Sq = Ø; and S1U ... U Sn-1 = S. 

Each class i; i = 1, .., n is number of objects of 

class i. we must seek to maximize an objective 

function that is a profit where ach object j of class 

i associated vij a positive profit and a weight 

vector Wij = (wij
1
, wij

2
 .., wij

m
).  

 

The goal is to assign the knapsack, exactly one 

and only one object per class with a maximum 

benefit without violating the capacity constraints 

[2]. 

 

The MMKP can be formulated in an Integer 

Linear Program (ILP) as follows: [7] 

 

 
 

 Note that the variable xij is 1 if the object j of the 

class i  is taken from the bag and is 0 otherwise. 

The constraints of type (1) are the capacity 

constraints. The constraints of type (2), called 

selection constraints, assure that each class of a 

single object must be selected. Authors are 

considered a variant that generalizes two other 

problems generalizing also the problem of bag-to-

back: the problem of MDKP and the problem of 

MCKP, and recently MMMKP. The problem 

MMKP becomes a problem when there MCKP 

one capacity constraint, whereas if there is only 

one class of choice and constraints will no longer 

have reason to be then it becomes a MDKP 

problem [7]. 

 

 

 Solving methods of MMKP differ from that of 

other variants of KP problem because the wording 

is different, and the process of resolution can be 

derived from the methods used for the other 

variants. [8] 

 

This paper presents BPH, for Branch and bound 

Pareto-algebraic Heuristic. BPH is a heuristic 

based on Branch and Bound (B&B) and uses the 

principle of Pareto algebra.  

 

III A branch and bound based heuristic  

 

      Discuss in this section, largely specific to the 

resolution of the problem of MMKP existing 

methods, they represent two broad approaches to 

resolution: heuristics or accurate, their derivatives 

are based on the characteristics of each that prove 

to be complementary. [9]  

         An exact method is characterized by the near 

certainty of achieving the optimal solution is 

theoretical but given the time of exponential 

calculation (2k) such that k is the number of 

objects) in the space of solutions of the problem. 

An approximate method known as heuristic 

consists in solving an optimization problem to 

reduce the search space resulting in reduced time 

to implementation; while not guaranteeing the 

optimality of the solution found [8] [13] [14].  

 

   The exact methods tell complete because it lists 

all the solutions; and approximate methods are 

called incomplete because it explores a subset of 

solutions. In the literature, there is very little 

accurate treating MMKP algorithms. These 

algorithms are based on branch and bound 

methods and differ in the valuation method used 

and the method of separation function. The first 

such algorithm was proposed by Khan et al. [10] It 

is based on the upper bound produced by the 

simplex method and then uses the method of 

Branch & Bound exploring the search tree by 

selecting the Best first (best first). The algorithm 

produces an optimal solution for instances of small 

and medium size [11].  

 

    As for the heuristic approaches, one of the first 

proposed heuristic is the one set by Moser [5] 

based on Lagrangian relaxation; Then comes the 

heuristic-based greedy algorithm proposed by 

Dantzig [8]; the generation of the column 

described in [1], it was enhanced by the concept of 

hybridizing with the connection to improve the 

quality of solutions Their concept converges to the 

same idea: first find a feasible solution for MMKP 

instance and iterate this calculation method by 

removing elements to improve the final 

solution[1]. 

 

    Motivated by the success of branch and bound 

algorithm in exact methods and Pareto-algebra in 

approximate methods, we propose a heuristic 

based on a combination of the two aforementioned 
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approaches enhanced by a rounding procedure 

which can generate high quality feasible solutions 

during the search process. 

 

IV HYBRID ALGORITHM 

 

   We propose a procedure based on the branch-

and-bound (B&B) incorporating a modified 

method of B&B combined operations Pareto-

algebraic version of hybrid algorithm; but does not 

guarantee the optimality of the solutions obtained. 

So the proposed approach we combine classical 

exact branch of B&B with the heuristic of Pareto 

algebra. The Branch and Bound use the separation 

algorithm and evaluation (Branch and Bound), so 

it guarantees an intelligent exploration of the field 

of solutions [2]. 

 

  However the efficiency depends on how to 

choose to carry out the separation and evaluation. 

The principle of separation: The separation 

principle is to divide the problem into a number of 

sub-problems each with its set of feasible 

solutions. Resolving all sub-problems and taking 

the best solution found, it is guaranteed to have 

solved the original problem.  

The separation principle is applied recursively to 

each of subsets as it contains several solutions. 

 

Note: The process of separating a set stops when 

the following conditions are satisfied: 

 

-knows the best solution of all; 

-knows better than any of the solution set; 

-knows all there are no feasible solution. 

The Strategy applied:  

    The strategy is the rule for choosing the next 

summit to be separated from the set of vertices of 

the tree. Among the best known strategies course 

include: 

 
3  The depth-first: The exploration focuses 

on sub-problems obtained by the largest number of 

separations applied to the initial problem, that is to 

say the most distant peaks of the root (the highest 

depth). Rapidly obtaining a feasible solution (for 

problems where it is difficult to get a good 

heuristic) and the little space required memory are 

the benefits. The downside is the exploration of 

subsets which may be inauspicious to obtain an 

optimal solution. 

 
4  The breadth-first: This strategy facilitates 

the sub-problems obtained by the least separation 

problem of starting, that is to say the closest to the 

root apexes (depth the lowest).  

 

 

5  The best first: This strategy encourages 

the exploration of sub-problems with the smaller 

lower bounds.  

 

  The strategy directs research where the 

probability of finding a better solution is the 

largest. We use the following strategies: DFS, BFS 

and The Best first, the strategy will determine the 

next steps in terms of quality and optimal 

execution time. [2] In our algorithm, we choose 

the method of Best First reduce for the execution 

time.  

 

   The higher maximum Zsup is initialized, for 

each iteration of a branch of the tree, resulting 

Zbest maximum is compared to Zsup if above the 

Zsup retrieves the value of Zbest. [8]  

 

    The algebra of Pareto Using algebra Pareto in 

[11] was combined with another heuristic; but it is 

based on the basic concept of algebraic operations 

Pareto namely configurations dominated and 

infeasible are removed from the search space of 

the solution remains the only dominant. It 

overcomes the explosion of the space of possible 

combinations of the search tree of B & B [12].  

 

   The concept of the hybrid algorithm The 

algorithm begins by generating an initial solution 

and then combines the groups one by one instance 

of the problem to generate partial solutions to each 

iteration.  

    Most of these solutions are eliminated by the 

Pareto dominance; but also by the process of 

evaluation at the end leading to the optimal 

solution or a solution close to the optimum in the 

case where only part of the partial solutions is 

maintained at each step. In addition, a rounding 

procedure is introduced to improve the evaluation 

process by generating feasible solutions of high 

quality while running the algorithm. The 

performance of the heuristics should be evaluated 

on two types of bodies; namely regular and non-

regular instances (Table 1 & 2). 
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Regular  

Instance

s 

 

Numbe

r of 

CLASS 

Number of 

CONTRAINTE

S 

Numbe

r of 

objects 

in class 

Total 

object

s 

     

I01 5 5 5 25 

I02 10 5 5 50 

I03 15 10 10 150 

I04 20 10 10 200 

I05 25 10 10 250 

I06 30 10 10 300 

I07 100 10 10 1000 

I08 150 10 10 1500 

I09 200 10 10 2000 

I10 250 10 10 2500 

I11 300 10 10 3000 

I12 350 10 10 3500 

I13 400 10 10 4000 

Tab1 A regular Instances used 

Irregula

r  

Instance

s 

Number 

of 

CLASS 

Number of 

CONTRAINTES 

Total 

objects 

RTI07 10 5 23 

RTI08 20 10 109 

RTI09 30 10 158 

RTI10 30 10 235 

RTI11 30 20 208 

RTI12 40 10 241 

RTI13 50 10 295 

INST21 100 10 565 

INST22 100 20 538 

INST23 100 30 541 

INST24 100 40 584 

INST25 100 10 871 

INST26 100 20 842 

INST27 200 10 1076 

INST28 300 10 1643 

INST29 400 10 2223 

INST30 500 10 2704 

Tab2  Irregular Instances used 
 

     For regular instances, they are among 13 

instances. [10] The first six bodies are small and 

medium in which the optimal solutions are known 

their size. The remaining seven bodies are 

characterized by their large size, the number of 

class is of the order of 100 to 400 with the same 

number of constraints 10, note that their optimal 

solutions have not been proven. [1] As for non-

regular instances, the number of classes is in the 

range 10 {discrete; 20, 30, 40, 50, 100; 200; 300, 

400; 500}; the number of objects varies between 

23 and more than 2,500 objects. 

 

 

V THE PSEUDO-ALGORITHM OF 

BRANCH & BOUND – PARETO – 

HEURISTIC (BPH) 

 

The algorithm is based on combining one-by-one 

groups of the MMKP instance using Pareto-

algebra product operation as explained in figure 1. 

It is obvious that exact solution based on Pareto-

algebra product cannot be considered for large 

instances.  

As a first step, the algorithm tries to find Pareto 

points in each configuration set. Dominated 

configurations cannot contribute to an optimal 

solution of the MMKP instance. 

 

Input : MMKP instance with a vector of configurtions  S 

and a vector of capacity F 

Ci, Ci+1 configurations sets 

Output : Zbest solution 
 

 for all Ai Є S do min( Ai) 

 Zdebut = initial sol()  // -∞ 

 Zbest =  Zdebut 

 Sort vector S in order to put groups with first items  

 Initialize a set of partial solutions Apartial=S(1) and S= 

S – S(1) 

 6.   for all  Ai  Є S do 

                    combine  Apartial with configurations  Ai 

                    eliminate discard  any infeasible  

                    or dominated  configuration from Apartial 

 Apartial  = product sum min( Ci    , Ci+1 , F) 

                    for all    configuration āj  Є  Apartial do 

                      calculate bound value Zsup 

  if  Zsup + profit(āj) ≤  Zbest then  

  discard partial solution 

  else 

  if Zsup + profit(āj) >Zbest then  

                              Zbest =  Zsup + profit(āj) 

                         apply best first  search strategy to select   

                              A best =best  (Apartial) 

        7.   Z=  best configuration (Apartial) 

                  if Z > Zbest  then Zbest =Z 

        8.  return Zbest 

 

 

 

Fig1  The Pseudo-algorithm BPH proposed 

 

VI Computational results 

 

    The purpose of this section is to experimentally 

investigate the various aspects of BPH on standard 

benchmarks. We evaluate the performance of BPH 

compared to the state-of-the-art best results. The 

obtained results are also compared to those 

obtained when running one hour Cplex Solver 

v12.2 on the same set of instances. Our algorithms 

were coded in C++ and all experiments were done 

on a PC with a 2.13GHz Intel Pentium Dual Core 

CPU and 2GB of memory. 
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Table 1. Small to medium size test problem 

details 

 

 

Table 2. Large size test problem details 
    The problems we considered are summarized in 

Tables 1 and 2. We tested a total of 30 instances 

corresponding to two groups: (i) regular instances 

with groups containing the same number of items. 

 

   We can draw several conclusions from these 

results.  

      First, the BPH results are competitive in terms 

of quality and running time especially those given 

in bold.  

      Second, in columns reporting the pure Cplex 

results with a time budget of one hour, we may 

conclude that hybrid heuristics outperform pure 

Cplex when given equal time budgets.  

     Third, the results we obtained with genetic 

algorithms are disappointing despite the use of 

several repair operators to deal with 

infeasible solutions generated by 

crossover operator.  

 

      In fact, we are persuaded that in 

the case of MMKP, any purely 

heuristic approach is doomed to fail. 

Hybridization with exact methods is 

better suited.  

 

      Finally, note that with BPH 

heuristic, we have only one parameter 

to adjust; the parameter L 

representing the number of partial 

solutions maintained at each iteration, 

while in all the state-of-the-art 

heuristics, there are several 

parameters to consider, and it is well 

known that when using approximate 

algorithms to solve optimization 

problems, different parameter settings lead to 

results of variable quality and the configuration of 

these parameters is a difficult task. 

 

 

VII CONCLUSION 

 

     We started to implement the proposed 

algorithm to solve the problem of bodies 

own multidimensional multiple choice 

knapsack using a hybrid algorithm.  

    The algorithm is based primarily on the 

use of Pareto - a product that combines an 

all sectors of the MMKP instance at hand. 

Second, much of the generated partial 

solutions is rejected either by Pareto 

dominance or better by the exact method of 

Branch & Bound. A rounding procedure is 

used to generate realistic high quality 

solutions in the execution of the algorithm, 

and the improvement of the selection 

process.  

      Encouraging results are possible because we 

think it will provide high-quality solutions in a 

reasonable computation time, and can generate 

good solutions in a reduce due to rounding 

performed at each iteration of the algorithm 

execution time . 
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