
Models & Optimisation and Mathematical Analysis Journal Vol.10 Issue 01 (2022)

11

Abstract — The coronavirus pandemic has had a dramatic

impact on worldwide healthcare and economic systems.

Interestingly, a lot of interest has been devoted to Machine

learning technological innovations, such as Decision Trees, for

promoting reliable decision aid support. In this paper, we propose

a decision tree-based learning approach to predict COVID19

infections at its earlier stage and to improve the organization of

care and patient follow-up. We show how this approach can be

exploited in association with a cross-platform mobile application

to provide an operational proof-of-concept. Experiments

performed on a real COVID-19 dataset show the efficiency of our

approach and its significant advantages in a healthcare context.

Keywords— Machine Learning, Classification, Decision Tree,

C4.5, Coronavirus, COVID-19, Medical diagnosis, Optimization,

Pruning, Decision aid tool, Cross-platform mobile application.

I. INTRODUCTION

ACHINE learning is a technological innovation that

changed the world with its ability of prediction and

decision making done through a set of tools and techniques

belonging to its various types. This branch of Artificial

Intelligence (AI) relies on the acquisition of new knowledge or

skills based on what has been experienced in the past, in order

to create generalizable models that can make predictions, one

of these most popular models is the decision tree (DT).

Specifically, tree-based learning falls under the category of

supervised learning. It can be used to solve both regression and

classification problems in the form of a tree structure. These

abilities of classification and prediction, made decision trees a

very useful technology for many real-life areas, including fraud

detection, target marketing and healthcare systems (e.g.

predicting diseases, improving the decision aid support). At the

beginning of 2020, the coronavirus spread across the world and

became a global pandemic. This inspired us to apply machine

learning with decision trees in the medical field with the aim of

helping doctors in their challenging tasks. However, it is well

recognized that the construction of an optimal decision tree is

an NP-hard problem [12]. Interestingly, several greedy

algorithms have been proposed in the literature, which generate

an approximate decision tree with higher accuracy, though

optimality could not be guaranteed. Among the algorithms, we

1 As it focuses only on the current node, while the other nodes are being

ignored

cite CART [9, 11], the ID3 algorithm of Quinlan in 1986 [6],

and C4.5 (then C5.0) of Quinlan in 1993 [5, 13]. From an

experimental point of view, these algorithms are very efficient

and allow the rapid construction of decision trees that predict

with great reliability the class of new data.

In this paper, we propose a decision aid model based on

optimized decision trees tailored for COVID-19 prediction in

the field of medical diagnosis. For higher performance and

prediction accuracy, we exploit the well-known C4.5 algorithm

that uses a greedy, top-down, recursive partitioning strategy for

growing a decision tree, in combination with a pruning method

to remove outlier branches from the grown tree. Our predictive

approach was embedded into an operational proof-of-concept,

which was tested on real datasets.

This paper is organized as follows. Section II recalls

preliminaries. Section III introduces an optimization technique

exploiting the decision trees pruning in order to improve the

prediction capabilities, while ensuring good learning accuracy.

Section IV illustrates our learning approach on a running

example. We discuss related work in section V. Section VI

reports our experiments on a real-world dataset about

Coronavirus Pandemic (COVID-19). Section VII concludes the

paper.

II. INDUCTIVE DECISION TREE LEARNING ALGORITHM

The classification is a Data mining technique that aims to

build a model of a function for calculating (predicting) the class

attribute of a data from the other attributes. Classification

follows a two-step process, learning step and prediction step. In

the learning step, the model is inductively built based on given

training data. In the prediction step, the model is used to predict

the response for given data. Decision Tree is one of the easiest

and popular classification algorithms. The decision tree is built

recursively by partitioning the training dataset into subsets. Let

𝑆 be the set of data from the training set, 𝐴 the set of attributes

(or features), and 𝑦 the class attribute (i.e. label or target

feature). Our approach is based on the C4.5 greedy1 algorithm

to build a decision tree from a set of training data. We stress

that unlike the ID3 algorithm, the C4.5 attributes may be

continuous or unknown.

The decision tree construction method is provided in

Algorithm 1. The key steps involved in the DT learning

algorithm are as follows:

Towards an Optimized Decision Tree Model for

COVID-19 Prediction

Nadia Daoudi1, Nour Elhouda Youcefi1, Noureddine Aribi1 and Ramzeddine Belaoudmou2
1Université Oran1, Lab. LITIO, 31000 Oran, Algeria

{nadia_daoudi, youcefi.nourelhouda}@outlook.com, aribi.noureddine@univ-oran1.dz
2CHU Lamine Debaghine, Alger, Algeria, consultant@appli-med.com

M

Models & Optimisation and Mathematical Analysis Journal Vol.10 Issue 01 (2022)

12

1) Select the best attribute using the 𝑆𝑝𝑙𝑖𝑡𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛

method to split the records into the best possible

manner (line 5). This method relies on a heuristic that

aims to reduce the number of tests that are needed to

classify the given tuple. Most popular selection

measures are Information Gain, Gain Ratio, and Gini

Index discussed below.
2) Make that attribute a decision node and breaks the

dataset into smaller subsets (lines 7 − 10).
3) Starts tree building by repeating this process

recursively for each child until the stopping criterion

is satisfied (line 2). The obvious strategy is to stop

once there are no more remaining attributes or the data

set covered by the attribute node belongs to the same

class. We will also consider the strategy of not

continuing the partitioning to avoid a given cost, while

emphasizing a certain level of performance and

accuracy. The 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝑃𝑟𝑢𝑛𝑖𝑛𝑔() method (line

12) relies on overfitting avoidance technique in order

to produce a robust prediction in the presence of noise.

Algorithm 1: DecisionTreeGrowing

(𝑆, 𝐴, 𝑦, 𝑆𝑝𝑙𝑖𝑡𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛, 𝑆𝑡𝑜𝑝𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛)

Input: 𝑆: training set; 𝐴: input feature set; 𝑦: target feature

𝑆𝑝𝑙𝑖𝑡𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛: a method to evaluate a split;

𝑆𝑡𝑜𝑝𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛: the stopping criteria of the growing process

Output: 𝑇: a decision tree

1: Create a new tree 𝑇 with a single (root) node;

2: if 𝑆𝑡𝑜𝑝𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑆) then

3: mark 𝑇 as a leaf node with the most common

 value of 𝑦 as a label;

4: else

5: Find 𝑎 ∈ 𝐴 with the best 𝑆𝑝𝑙𝑖𝑡𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑎𝑖 , 𝑆);

6: Label 𝑡 with 𝑎;

7: foreach outcome 𝑣𝑖 ∈ 𝑎 do

8: 𝑆𝑢𝑏𝑡𝑟𝑒𝑒𝑖 ←
 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝐺𝑟𝑜𝑤𝑖𝑛𝑔(𝜎𝑎=𝑣𝑖

𝑆, 𝐴, 𝑦);

9: Connect the root note of 𝑡𝑇 to 𝑆𝑢𝑏𝑡𝑟𝑒𝑒𝑖 with

 an edge labeled as 𝑣𝑖;

10: end

11: end

12: return 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝑃𝑟𝑢𝑛𝑖𝑛𝑔(𝑆, 𝑇, 𝑦);

Building a DT is computationally inexpensive, making it

possible to handle very large training set. Furthermore, once a

decision tree has been built, classifying a test record is

extremely fast, with a worst-case complexity of 𝑂(𝑤), where w

is the maximum depth of the tree.

A. Attribute selection criteria:

The main intuition behind the choice of an attribute is that we

try to minimize the heterogeneity at each node (i.e. Impurity):

the data which reaches a certain node of the decision tree must

be more homogeneous than the data reaching an ancestor node.

For this, we need to be able to measure the homogeneity of a

dataset. Shannon [2] introduced the concept of entropy to

measure the impurity of the input set. In physics and

mathematics, entropy referred as the randomness or the

impurity in the system. In information theory, the entropy is a

measure of the amount of uncertainty in a dataset. So, the more

impurity the dataset is, the greater the entropy (or uncertainty)

is. The decision tree algorithms apply this theory. Given a

training set 𝑆, the probability vector of the target attribute 𝑦 is

defined as follows [14]:

 𝑃𝑦(𝑆) = (
|𝜎𝑦=𝑐1𝑆|

|𝑆|
, . . . ,

|𝜎𝑦=𝑐𝑑𝑜𝑚(𝑦)
𝑆|

|𝑆|
) (1)

where 𝜎𝑎𝑖=𝑣𝑖,𝑗
𝑆 returns the records with the attribute value

𝑎𝑖 = 𝑣𝑖,𝑗 , 𝑣𝑖,𝑗 ∈ 𝑑𝑜𝑚(𝑎𝑖) and
|𝜎𝑦=𝑐𝑖

𝑆|

|𝑆|
 is the probability of an

object being classified to a particular class.

1) Information Gain. The Information gain is an

impurity criterion (proposed by [8]) based on the

measure of entropy. It is given by the following

formula:

𝐺𝑎𝑖𝑛(𝑎𝑖 , 𝑆) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, 𝑆) −

∑
|𝜎𝑎𝑖=𝑣𝑖,𝑗

𝑆|

|𝑆|𝑣𝑖,𝑗∈𝑑𝑜𝑚(𝑎𝑖) × 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑦, 𝜎𝑎𝑖=𝑣𝑖,𝑗
𝑆) (2)

where

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, 𝑆) = ∑ −
|𝜎𝑦=𝑐𝑖

𝑆|

|𝑆|𝑐𝑖 ∈𝑑𝑜𝑚(𝑦) ×

 𝑙𝑜𝑔2 (
|𝜎𝑦=𝑐𝑖

𝑆|

|𝑆|
) (3)

Information gain computes the difference between

entropy before split and average entropy after split of

the dataset based on given attribute values. Intuitively,

having subsets with minimal entropy is interesting. It

is natural to sum these entropies by weighting them

according to the proportion of records in each subset.

2) Gini Index. The Gini index (i.e. gini impurity [6])

measures the divergence between the probabilities of

the values of the target feature.

𝐺𝑖𝑛𝑖(𝑦, 𝑆) = 1 − ∑ (
|𝜎𝑦=𝑐𝑖

𝑆|

|𝑆|
)

2

𝑐𝑖∈𝑑𝑜𝑚(𝑦) (4)

Using this measure, the attribute selection is made by

taking the maximum of the following measure:

𝐺𝑖𝑛𝑖𝐺𝑎𝑖𝑛(𝑎𝑖 , 𝑆) = 𝐺𝑖𝑛𝑖(𝑦, 𝑆) −

∑
|𝜎𝑎𝑖=𝑣𝑖,𝑗

𝑆|

|𝑆|𝑣𝑖,𝑗∈𝑑𝑜𝑚(𝑎𝑖) × 𝐺𝑖𝑛𝑖 (𝑦, 𝜎𝑎𝑖=𝑣𝑖,𝑗
𝑆) (5)

3) Gain Ratio Information gain is biased for the attribute

with many outcomes. In order to solve this problem,

C4.5 algorithm, uses an extension to information gain

known as the gain ratio. It handles the issue of bias by

takes the number and size of branches into account

when choosing an attribute. It is defined as follows:

 𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑎𝑖 , 𝑆) =
𝐺𝑎𝑖𝑛(𝑎𝑖,𝑆)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑎𝑖,𝑆)
 (6)

Models & Optimisation and Mathematical Analysis Journal Vol.10 Issue 01 (2022)

13

III. DECISION TREE PRUNING

Pruning is a machine learning technique that removes parts

of a decision tree, which obtains the least amount of information

in order to reduce the size of the tree. Thus, pruning aims to

reduce the rate of prediction error. It is achieved through

replacing a complete sub-tree with a leaf node, and the criteria

of the process depend on the course of events, which allow to

estimate the true flaw in that particular sub-tree. The algorithm

for pruning is as follows:

Algorithm 2: DecisionTreePruning(𝑆, 𝑇, 𝑦)

Input: 𝑆: training set; 𝑦: target feature

1: InOut: 𝑇: the tree to be pruned

2: do

3: Select a note 𝑡 ∈ 𝑇 such that pruning it maximally

 improve some evaluation criteria;

4: if 𝑡 ≠ ∅ then

5: 𝑇 ← 𝑝𝑟𝑢𝑛𝑒𝑑(𝑇, 𝑡)

6: end

7: while 𝑡 ≠ ∅;

There are two types of decision tree pruning [10]:

• Pre-pruning: if the tree stops growing before all

examples of the training set are well classified.

• Post-pruning: if the model is built entirely, pruning

the elements that contribute to excessive learning.

Fig. 1. Pruning the decision tree: sub tree replacement [10]

Assuming the tree shown in the figure above, after examining

all of its sub trees. By observing that the gain for a leaf exceeds

that of the whole sub-tree, it is replaced by the leaf "bad".

Fig. 2. Pruning the decision tree: new tree [10]

IV. RUNNING EXAMPLE

This part represents an example of a decision tree generation

using the C4.5 algorithm. The example takes the dataset

collected in a period of two weeks to decide if the weather is

suitable for playing tennis, taking into account the following

attributes: outlook, temperature, and wind, which have nominal

values, as well as humidity, which has continuous values.

TABLE I

DATASET 𝑆 OF THE PLAYING TENNIS EXAMPLE [13]

Day Outlook Temperature Humidity Wind Play

1 Sunny Hot 85 Weak No

2 Sunny Hot 90 Strong No

3 Overcast Hot 78 Weak Yes

4 Rain Mild 96 Weak Yes

5 Rain Cold 80 Weak Yes

6 Rain Cold 70 Strong No

7 Overcast Cold 65 Strong Yes

8 Sunny Mild 95 Weak No

9 Sunny Cold 70 Weak Yes

10 Rain Mild 80 Weak Yes

11 Sunny Mild 70 Strong Yes

12 Overcast Mild 90 Strong Yes

13 Overcast Hot 75 Weak Yes

14 Rain Mild 80 Strong No

The present steps show the construction of the decision tree:

1) Calculation of Entropy:

The entropy of the dataset 𝑆 is given as follows:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = −
9

14
× 𝑙𝑜𝑔2 (

9

14
) −

5

14
× 𝑙𝑜𝑔2 (

5

14
)

= 0.94

2) Calculation of the information gain:

The next step is to calculate the information gain for

the four attributes in order to find the attribute which

Models & Optimisation and Mathematical Analysis Journal Vol.10 Issue 01 (2022)

14

has the highest value. This attribute will be the root

node.

Calculation of entropies:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑆𝑢𝑛𝑛𝑦) = −
2

5
× 𝑙𝑜𝑔2 (

2

5
) −

3

5
× 𝑙𝑜𝑔2 (

3

5
)

= 0.9710

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑅𝑎𝑖𝑛) = −
3

5
× 𝑙𝑜𝑔2 (

3

5
) −

2

5
× 𝑙𝑜𝑔2 (

2

5
)

= 0.9710

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡)

= −
4

4
× 𝑙𝑜𝑔2 (

4

4
) − 0 × 𝑙𝑜𝑔2(0)

= 0

Calculation of the information gain:

𝐺𝑎𝑖𝑛(𝑆, 𝑂𝑢𝑡𝑙𝑜𝑜𝑘)
= 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆)

−
5

14
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑆𝑢𝑛𝑛𝑦)

−
5

14
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑅𝑎𝑖𝑛)

−
4

14
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡)

= 0.94 −
5

14
× 0.9710

−
5

14
× 0.9710 −

4

14
× 0

𝐺𝑎𝑖𝑛(𝑆, 𝑂𝑢𝑡𝑙𝑜𝑜𝑘) = 0.2467

As well we find for the other discrete attributes:

𝐺𝑎𝑖𝑛(𝑆, 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 0.0292

𝐺𝑎𝑖𝑛(𝑆, 𝑊𝑖𝑛𝑑) = 0.0481

For an attribute of continuing value such as humidity, the

C4.5 algorithm manages the calculation of information gain as

follows:

1) The first step is to sort the humidity attribute values,

from the smallest to the largest, and to remove

duplicate values. The set of sorted values is as follows:
{65, 70, 75, 78, 80, 85, 95, 96}

2) As a second step, after sorting all the examples in

ascending order for the attribute humidity, C4.5

proposes to perform a binary division for each of value

𝐴𝑖, taking all instances lower than or equal to the

current value 𝐴𝑗 ≤ 𝐴𝑖, and also all instances higher

than the current value 𝐴𝑖 > 𝐴𝑗. Then, it calculates the

gain and finds the value that brings the best gain which

would be the threshold.

It applies formula (1) to obtain the entropy and

formula (2) to get the information gain. The table II

summarizes the gain calculation for the attribute

continuous humidity.

Therefore, the value which brings the best gain is associated

to the threshold which is equal to 80 for humidity.

𝐺𝑎𝑖𝑛(𝑆, 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦) = 0.102

According to the comparison, the attribute "Outlook" with the

highest value of information gain is the root node of the tree

structure.

This root has three values: "Sunny'', "Overcast'' and "Rain''.

At this point, the tree will be divided into three sub-trees.

All the steps of the partition are applied recursively on the

new subsets, and, in order to form a tree structure, all these

nodes become leaves.

• The first sub-tree associated with outlook as

"Sunny'':

Calculation of entropy:

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑆𝑢𝑛𝑛𝑦) = −
2

5
× 𝑙𝑜𝑔2 (

2

5
) −

3

5
× 𝑙𝑜𝑔2 (

3

5
)

= 0.9710

Calculation of the information gain:

𝐺𝑎𝑖𝑛(𝑆𝑆𝑢𝑛𝑛𝑦, 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 0.5710

𝐺𝑎𝑖𝑛(𝑆𝑆𝑢𝑛𝑛𝑦, 𝑊𝑖𝑛𝑑) = 0.0200

𝐺𝑎𝑖𝑛(𝑆𝑆𝑢𝑛𝑛𝑦, 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦) = 0.971

After comparison, humidity produces the best

information gain, in case the outlook is sunny.

Thus, when the value of the humidity attribute is less

than or equal to 70, the decision will correspond to

the class ''Yes''.

Finally, when the value of the humidity attribute is

greater than 70, the decision will correspond to the

class ''No''.

Day Temperature Humidity Wind Play

1 Hot 85 Weak No

2 Hot 90 Strong No

8 Mild 95 Weak No

9 Cold 70 Weak Yes

11 Mild 70 Strong Yes

Outlook

? ? ?

Models & Optimisation and Mathematical Analysis Journal Vol.10 Issue 01 (2022)

15

• The second sub-tree associated with outlook as

“Overcast”:

Calculation of entropy:

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡) = −
5

5
× 𝑙𝑜𝑔2 (

5

5
) −

0

5
× 𝑙𝑜𝑔2 (

0

5
)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡) = 0 ⇒ So this sub-tree is perfectly

classified

As a result, when the “Outlook” attribute is “Overcast”, all

examples belong to the positive class, so it returns the leaf

node “Yes”.

• The second sub-tree associated with outlook as

“Rain”:

Calculation of entropy:

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑅𝑎𝑖𝑛) = −
3

5
× 𝑙𝑜𝑔2 (

3

5
) −

2

5
× 𝑙𝑜𝑔2 (

2

5
)

= 0.9710

Calculation of the information gain:

𝐺𝑎𝑖𝑛(𝑆𝑅𝑎𝑖𝑛 , 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 0.0200

𝐺𝑎𝑖𝑛(𝑆𝑅𝑎𝑖𝑛 , 𝑊𝑖𝑛𝑑) = 0.9710

𝐺𝑎𝑖𝑛(𝑆𝑅𝑎𝑖𝑛 , 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦) = 0.322

After comparison, wind produces the best

information gain, in case the outlook is rain.

Thus, when the value of the humidity attribute is

weak, the decision will correspond to the class

''Yes''.

Humidity 65 70 75 78 80 85 90 95 96

Interval ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ >

Yes 1 8 3 6 4 5 5 4 7 2 7 2 8 1 8 1 9 0

No 0 5 1 4 1 4 1 4 2 3 3 2 4 1 5 0 5 0

Entropy 0 0.96 0.81 0.97 0.72 0.99 0.65 1 0.76 0.97 0.88 1 0.92 1 0.96 0 0.94 0

Gain 0.048 0.015 0.045 0.09 0.102 0.025 0.010 0.048 0

Day Temperature Humidity Wind Play

3 Hot 78 Weak Yes

7 Cold 65 Strong Yes

12 Mild 90 Strong Yes

13 Hot 75 Weak Yes

Day Temperature Humidity Wind Play

4 Mild 96 Weak Yes

5 Cold 80 Weak Yes

6 Cold 70 Strong No

10 Mild 80 Weak Yes

14 Mild 80 Strong No

TABLE II

GAIN CALCULATION FOR THE ATTRIBUTE CONTINUOUS HUMIDITY USING C4.5 ALGORITHM

O
v
ercast

Outlook

Humidity ?

No

Yes

Yes

O
v
ercast

Outlook

Humidity ?

No

?

Yes

Models & Optimisation and Mathematical Analysis Journal Vol.10 Issue 01 (2022)

16

Finally, when the value of the wind attribute is

strong, the decision will correspond to the class

''No''.

The DT procedure (see Algorithm 1) lasts until the

following decision tree is generated:

The decision tree can also be expressed in the form of decision

rules:

If Outlook = sunny and Humidity < 70 Then Play = no

If Outlook = sunny and Humidity ≤ 70 Then Play = yes

If Outlook = overcast Then Play = yes

If Outlook = rain and Wind = weak Then Play = yes

If Outlook = rain and Wind = strong Then Play = no

V. RELATED WORK

There are few studies that focused on predicting the presence

of COVID-19 for a given human being. However, in this

section, we concentrate on the research works related involving

the use of a decision tree algorithm to predict positive Covid-

19 cases. Riana et al. [4] introduced a supervised approach to

make a diagnosis of surveillance classification using the C4.5

algorithm. The results indicated that the COVID-19

surveillance diagnostic was successfully modeled into a

decision tree classification using the C4.5 algorithm. The

accuracy rate of the testing process in a confusion matrix with

three classes is equal to 92.86%. Another C4.5 machine

learning classifier is also used in the work of Nanda et al. [3].

According to the results, the algorithm helps in obtaining a 75%

accuracy rate. Our work is different in the sense that it consists

to build a robust prediction model using an optimized decision

tree algorithm. The optimization step allows having a classifier

with the best compromise between the learning accuracy and

prediction generalization for the unseen tuples.

2 https://scikit-learn.org

VI. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate our fast learning

framework for predicting COVID-19 infections.

A. Experimental protocol:

Our experiments were conducted using real datasets and

according to the following protocol:

1) Hardware environment. Our DT model was trained and

tested on a PC with an Intel Core i5 processor, 2.70 GHz

and 8GB memory and with Windows 10, 64-bit operating

system. Besides, our mobile application (which embeds the

resulting DT prediction model in the form of decision

rules) was deployed and tested on a mobile phone Samsung

J4 having ARMv7-A CPU, 2GB memory, and 32GB

storage capacity.

2) Software environment. Our Decision Tree-based

classifier was implemented using the well-known Scikit-

Learn python library2 using the Gini impurity criterion [6],

whereas the cross-platform mobile application was

implemented using a couple of web development

frameworks (Ionic.v5, Angular.v8, NodeJs, Cordova,

SQLite) and programming languages, namely, TypeScript,

HTML5, CSS, SQL. The full source code is publicly

available here [1], whereas the dataset can be provided

upon request.

3) Benchmark dataset. We have considered a dataset about

real 270 PCR (Polymerase Chain Reaction) tests for

COVID-19 provided by the university hospital center

(CHU) of Algiers (the capital of Algeria). Several

information were collected from each patient, such as AGE,

FIEVRE, ECOULEMENT', CEPHALEES, IRRITABILI,

ASTHENIE, DIARRHEE, TABAC, DIABETE, etc. The

class label is given by the PCR result that we which to learn

inductively.

Before building our model, we went through an essential

step in the success of any machine learning project, which

is data cleaning and preprocessing. The cleaning step

consisted to eliminate some lines (patients) having some

missed values. In the preprocessing step, we verified that

there is not some classes that dominate the dataset, as this

may most likely lead to biased trees. So, it is highly

recommended to balance the dataset prior to fitting with

the decision tree. Next, we proceed with a cross-validation

procedure and divide the data set into 80% for the training

dataset and 20% for testing the model.

4) Decision tree optimization. There are two kinds of

misclassification: (i) Training error, which is the number

of misclassification errors committed on training records,

and the (ii) Generalization error, which is the expected

error of the model on previously unseen records. So, a good

model must have low training error as well as low

generalization error so as to avoid undesirable situations,

namely model (under or) overfitting. We have used the

built-in Scikit-learn pre-pruning optimization to produce a

DT with the best trade-off between both training and

generalization errors.

O
v
ercast

Outlook

Humidity

No

Yes

Yes

Wind

Yes No

Models & Optimisation and Mathematical Analysis Journal Vol.10 Issue 01 (2022)

17

5) Model accuracy evaluation. To assess the effectiveness

of our classification model we use a confusion matrix,

which is a contingency table that measures the performance

of a machine learning model, typically a supervised

learning algorithm. It allows analyzing the frequency with

which the results of predictions are accurate compared to

the reality in classification problems. We also recall the

four main terminologies used to define quality metrics

related to the prediction capability of an actual COVID-19

infection, which correspond to:

• TP (True Positive): the number of patients correctly

classified as carriers of the COVID-19 virus.

• TN (True Negative): the number of correctly classified

patients who are in good health.

• FP (False Positive): the number of misclassified patients

who are in good health.

• FN (False Negative): the number of misclassified patients

carrying the COVID-19 virus.

B. Experiment results

Results given by our optimized decision tree. In order to

qualitatively assess our approach, we summarize the prediction

results of our decision tree classifier (see figure 5) using 30 new

patients, and then compare them to the expected values using

the following confusion table:

 ACTUALLY: +(1) ACTUALLY: –(0)

PREDICTED: +(1) TP = 21 FP = 3

PREDICTED: –(0) FN = 1 TN = 5

Based on this table, we can extract enough information to

calculate various performance statistics including precision

and recall metrics.

• Precision is the frequency in which the number of the

predicted positive class actually belongs to the positive

class.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (7)

• Recall which is sometimes referred to as ``sensitivity'', is a

metric that quantifies the number of correctly identified

positive predictions among all of the positive predictions

that could have been made.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8)

For our approach, we obtained the following results:

− Precision = 0.87

− Recall = 0.95

Additionally, we use the harmonic mean which combines

both precision and recall into a single score. Formally, it is

defined as follows:

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (9)

In our case the value of F1 Score is equal to 0.91.

Overall, we found that the evaluation results are quite good

in terms of being able to better distinguish patients carrying the

COVID-19 virus, from those who are healthy by reaching the

value of the F1 Score of 0.91, where the ideal value for F1

Score is 1 and the worst value is 0.

Results using a classical decision tree. The main goal of

this section is to show to what extent the optimization step

allows us to avoid the model overfitting problem, while

maximizing the prediction generalization of the proposed

classifier. To this end, we have performed the same experiments

on the preprocessed COVID-19 dataset, and according to the

same cross-validation procedure, except that we do not consider

the optimization step when producing the decision tree

classifier. In this case, we obtained the following results: (i) A

precision value equals to 0.63 instead of 0.87 for the optimize

DT; (ii) A recall value of 0.54, whereas the optimized classifier

provides a value of 0.95, which is quite superior compared to

the classical version; and finally (iii) The F1 Score is equal to

0.56, which remains a poor result compared to our optimized

decision tree, where the F1 Score was equal to 0.91.

These results can be explained by the fact that the classical

decision tree classifier tries to be as perfect as possible, by

increasing the decision tree depth of required tests in order to

minimize the classification error (in the training phase).

However, this may lead to very complex decision trees and

most probably ends with overfitting (see figure 6), with a severe

lack in terms of prediction capabilities (do not generalize the

data well). Unlike the classical model, the optimized classifier

tends to reduce the required information to classify the tuples

(i.e. the number of tests that are needed to classify a given tuple)

using a subset of attributes having the highest information gain.

C. Proof-Of-Concept: A decision Aid Mobile Application for

COVID-19 prediction.

In the context of a healthcare emergency, we opted for

optimized decision trees (with pruning) in order to effectively

tackle the COVID-19 pandemic (in Algeria country), using the

Sci-kit Learn python library and a handy mobile application. As

explained above, we have used, in our experiments, real

COVID-19 datasets provided by the CHU (university hospital)

of Algiers (the capital city of Algeria). The resulting DT is

provided and illustrated in [1].

The first page of our mobile application represents the

graphical interface of the home page, it gives the user an idea

of the different functionalities of the application, see figure 3.

Our cross-platform mobile application exploits the resulting

decision tree classifier described in sections II and III.

Models & Optimisation and Mathematical Analysis Journal Vol.10 Issue 01 (2022)

18

Fig. 3. Home page of the COVID-19 application.

We have designed and developed jointly with a medical

expert a form page to collect the data needed from a patient to

analyze and predict infection by COVID-19, see figure 4.

Fig. 4. A form page to gather data from a patient

• First, the user (doctor) of our mobile application will fill in

the information related to a patient. In the meantime, we

display error messages whenever the doctor makes a

mistake in this step.

• The second step involves a set of questions about the most

common symptoms of COVID-19 (e.g. 'FIEVRE',

'ECOULEMENT', 'CEPHALEES', 'IRRITABILI',

'ASTHENIE', 'DIARRHEE', 'TABAC', 'DIABETE', etc.).

• The third step focuses on a patient's medical history, which

includes illnesses (chronic, serious), as well as other

complementary questions in order to define a specific risk

factor and make a more fine-grained decision.

VII. CONCLUSION

In this paper, we have proposed a fast operational machine

learning approach based on optimized decision trees in order to

mitigate the effects and the spread of the COVID-19 pandemic

crossing international boundaries, while realizing a good

compromise between prediction accuracy and generalization.

Experimental results on a real dataset have demonstrated that

our DT-based approach is well suited to predict potential

COVID-19 infection with high accuracy. The proposed

approach is packaged as a proof-of-concept cross-platform

mobile application for predicting a possible COVID-19

infection, thereby minimizing the potential burden of the

pandemic on our society.

REFERENCES

[1] N. Youcefi, N. Daoudi, and N. Aribi. Source code:
https://drive.google.com/drive/folders/1NFXw3trX43kX2IOB8VJ27Bi6

FuSQbJbi?usp=sharing, 2022. Accessed: 2022-06-15.
[2] C. E. Shannon. A mathematical theory of communication. Bell System

Technical Journal (juillet et octobre 1948), 27:379–423/623–656, 1948.

[3] C. R. Panigrahi, B. Pat, M. Rath, T. Weng and S. Nanda. Covid-19 risk
assessment using the c4.5 algorithm. 2021.

[4] D. Riana and W. Wiguna, Diagnosis Of Coronavirus Disease 2019

(COVID-19) Surveillance Using C4.5 Algorithm. 2020.
[5] J. Fürnkranz. Decision Tree, pages 263–267. Springer US, Boston, MA,

2010.

[6] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106,
1986.

[7] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.
[8] J. Ross Quinlan. Simplifying decision trees. International Journal of

Man-Machine Studies, 27(3):221–234, 1987.

[9] K. Sotiris. (2007). Supervised Machine Learning: A Review of
Classification Techniques. Informatica (Ljubljana). 31.

[10] M. Fakir and H. Ezzikouri. Algorithmes de classification : Id3 & c4.5.

page 36.
[11] N. Patil, R. Lathi and V. Chitre. (2012). Comparison of C5. 0 & CART

classification algorithms using pruning technique. Int. J. Eng. Res.

Technol.. 1. 1-5.
[12] O. Maimon and L. Rokach. Data Mining and Knowledge Discovery

Handbook. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[13] P. Preux. Notes de cours de fouille de données. Technical report, Support
de cours, Université de Lille 3, 2006.

[14] Y. Lebbah. (2021, Febriary). Support de cours: Fouille de Données

Orientée Motifs. Université Oran1. [Online]. Available:
https://sites.google.com/site/ylebbah/teach?authuser=0#h.xeqj7nrmwu9q

Models & Optimisation and Mathematical Analysis Journal Vol.10 Issue 01 (2022)

19

Fig. 5. Optimized decision tree of the COVID-19 classifier

Fig. 6. Classical decision tree of the COVID-19 classifier

