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Abstract — The coronavirus pandemic has had a dramatic 

impact on worldwide healthcare and economic systems. 

Interestingly, a lot of interest has been devoted to Machine 

learning technological innovations, such as Decision Trees, for 

promoting reliable decision aid support. In this paper, we propose 

a decision tree-based learning approach to predict COVID19 

infections at its earlier stage and to improve the organization of 

care and patient follow-up. We show how this approach can be 

exploited in association with a cross-platform mobile application 

to provide an operational proof-of-concept. Experiments 

performed on a real COVID-19 dataset show the efficiency of our 

approach and its significant advantages in a healthcare context.  

 
Keywords— Machine Learning, Classification, Decision Tree, 

C4.5, Coronavirus, COVID-19, Medical diagnosis, Optimization, 

Pruning, Decision aid tool, Cross-platform mobile application. 

 

I. INTRODUCTION 

ACHINE learning is a technological innovation that 

changed the world with its ability of prediction and 

decision making done through a set of tools and techniques 

belonging to its various types. This branch of Artificial 

Intelligence (AI) relies on the acquisition of new knowledge or 

skills based on what has been experienced in the past, in order 

to create generalizable models that can make predictions, one 

of these most popular models is the decision tree (DT). 

Specifically, tree-based learning falls under the category of 

supervised learning. It can be used to solve both regression and 

classification problems in the form of a tree structure. These 

abilities of classification and prediction, made decision trees a 

very useful technology for many real-life areas, including fraud 

detection, target marketing and healthcare systems (e.g. 

predicting diseases, improving the decision aid support). At the 

beginning of 2020, the coronavirus spread across the world and 

became a global pandemic. This inspired us to apply machine 

learning with decision trees in the medical field with the aim of 

helping doctors in their challenging tasks. However, it is well 

recognized that the construction of an optimal decision tree is 

an NP-hard problem [12]. Interestingly, several greedy 

algorithms have been proposed in the literature, which generate 

an approximate decision tree with higher accuracy, though 

optimality could not be guaranteed. Among the algorithms, we 

 
1 As it focuses only on the current node, while the other nodes are being 

ignored 

cite CART [9, 11], the ID3 algorithm of Quinlan in 1986 [6], 

and C4.5 (then C5.0) of Quinlan in 1993 [5, 13]. From an 

experimental point of view, these algorithms are very efficient 

and allow the rapid construction of decision trees that predict 

with great reliability the class of new data.  

In this paper, we propose a decision aid model based on 

optimized decision trees tailored for COVID-19 prediction in 

the field of medical diagnosis. For higher performance and 

prediction accuracy, we exploit the well-known C4.5 algorithm 

that uses a greedy, top-down, recursive partitioning strategy for 

growing a decision tree, in combination with a pruning method 

to remove outlier branches from the grown tree. Our predictive 

approach was embedded into an operational proof-of-concept, 

which was tested on real datasets. 

This paper is organized as follows. Section II recalls 

preliminaries. Section III introduces an optimization technique 

exploiting the decision trees pruning in order to improve the 

prediction capabilities, while ensuring good learning accuracy. 

Section IV illustrates our learning approach on a running 

example. We discuss related work in section V. Section VI 

reports our experiments on a real-world dataset about 

Coronavirus Pandemic (COVID-19). Section VII concludes the 

paper. 

II. INDUCTIVE DECISION TREE LEARNING ALGORITHM 

The classification is a Data mining technique that aims to 

build a model of a function for calculating (predicting) the class 

attribute of a data from the other attributes. Classification 

follows a two-step process, learning step and prediction step. In 

the learning step, the model is inductively built based on given 

training data. In the prediction step, the model is used to predict 

the response for given data. Decision Tree is one of the easiest 

and popular classification algorithms. The decision tree is built 

recursively by partitioning the training dataset into subsets.  Let 

𝑆 be the set of data from the training set, 𝐴 the set of attributes 

(or features), and 𝑦 the class attribute (i.e. label or target 

feature). Our approach is based on the C4.5 greedy1 algorithm 

to build a decision tree from a set of training data. We stress 

that unlike the ID3 algorithm, the C4.5 attributes may be 

continuous or unknown.  

The decision tree construction method is provided in 

Algorithm 1. The key steps involved in the DT learning 

algorithm are as follows: 

Towards an Optimized Decision Tree Model for 

COVID-19 Prediction 

Nadia Daoudi1, Nour Elhouda Youcefi1, Noureddine Aribi1 and Ramzeddine Belaoudmou2 
1Université Oran1, Lab. LITIO, 31000 Oran, Algeria  

{nadia_daoudi, youcefi.nourelhouda}@outlook.com, aribi.noureddine@univ-oran1.dz  
2CHU Lamine Debaghine, Alger, Algeria, consultant@appli-med.com  

M 



Models & Optimisation and Mathematical Analysis Journal Vol.10 Issue 01 (2022) 

 

12 

 

1) Select the best attribute using the 𝑆𝑝𝑙𝑖𝑡𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

method to split the records into the best possible 

manner (line 5). This method relies on a heuristic that 

aims to reduce the number of tests that are needed to 

classify the given tuple. Most popular selection 

measures are Information Gain, Gain Ratio, and Gini 

Index discussed below. 
2) Make that attribute a decision node and breaks the 

dataset into smaller subsets (lines 7 − 10). 
3) Starts tree building by repeating this process 

recursively for each child until the stopping criterion 

is satisfied (line 2). The obvious strategy is to stop 

once there are no more remaining attributes or the data 

set covered by the attribute node belongs to the same 

class. We will also consider the strategy of not 

continuing the partitioning to avoid a given cost, while 

emphasizing a certain level of performance and 

accuracy. The 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝑃𝑟𝑢𝑛𝑖𝑛𝑔() method (line 

12) relies on overfitting avoidance technique in order 

to produce a robust prediction in the presence of noise. 
 

Algorithm 1: DecisionTreeGrowing 

(𝑆, 𝐴, 𝑦, 𝑆𝑝𝑙𝑖𝑡𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛, 𝑆𝑡𝑜𝑝𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛) 

Input: 𝑆: training set; 𝐴: input feature set; 𝑦: target feature 

𝑆𝑝𝑙𝑖𝑡𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛: a method to evaluate a split; 

𝑆𝑡𝑜𝑝𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛: the stopping criteria of the growing process 

Output: 𝑇: a decision tree 

1:    Create a new tree 𝑇 with a single (root) node; 

2:    if 𝑆𝑡𝑜𝑝𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑆) then 

3:         mark 𝑇 as a leaf node with the most common  

             value of 𝑦 as a label; 

4:    else 

5:          Find 𝑎 ∈  𝐴 with the best 𝑆𝑝𝑙𝑖𝑡𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑎𝑖 , 𝑆); 

6:          Label 𝑡 with 𝑎; 

7:          foreach outcome 𝑣𝑖 ∈ 𝑎 do 

8:                𝑆𝑢𝑏𝑡𝑟𝑒𝑒𝑖 ←
                         𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝐺𝑟𝑜𝑤𝑖𝑛𝑔(𝜎𝑎=𝑣𝑖

𝑆, 𝐴, 𝑦);    

9:                Connect the root note of 𝑡𝑇 to 𝑆𝑢𝑏𝑡𝑟𝑒𝑒𝑖 with 

                     an edge labeled as 𝑣𝑖; 

10:        end  

11:   end  

12:   return 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝑃𝑟𝑢𝑛𝑖𝑛𝑔(𝑆, 𝑇, 𝑦); 
 

Building a DT is computationally inexpensive, making it 

possible to handle very large training set. Furthermore, once a 

decision tree has been built, classifying a test record is 

extremely fast, with a worst-case complexity of 𝑂(𝑤), where w 

is the maximum depth of the tree. 

 

A. Attribute selection criteria: 

The main intuition behind the choice of an attribute is that we 

try to minimize the heterogeneity at each node (i.e. Impurity): 

the data which reaches a certain node of the decision tree must 

be more homogeneous than the data reaching an ancestor node. 

For this, we need to be able to measure the homogeneity of a 

dataset. Shannon [2] introduced the concept of entropy to 

measure the impurity of the input set. In physics and 

mathematics, entropy referred as the randomness or the 

impurity in the system. In information theory, the entropy is a 

measure of the amount of uncertainty in a dataset. So, the more 

impurity the dataset is, the greater the entropy (or uncertainty) 

is. The decision tree algorithms apply this theory. Given a 

training set 𝑆, the probability vector of the target attribute 𝑦 is 

defined as follows [14]: 

                  𝑃𝑦(𝑆) = (
|𝜎𝑦=𝑐1𝑆|

|𝑆|
, . . . ,

|𝜎𝑦=𝑐𝑑𝑜𝑚(𝑦)
𝑆|

|𝑆|
)                       (1) 

where 𝜎𝑎𝑖=𝑣𝑖,𝑗
𝑆 returns the records with the attribute value 

𝑎𝑖 = 𝑣𝑖,𝑗 , 𝑣𝑖,𝑗 ∈ 𝑑𝑜𝑚(𝑎𝑖) and 
|𝜎𝑦=𝑐𝑖

𝑆|

|𝑆|
 is the probability of an 

object being classified to a particular class. 

1) Information Gain. The Information gain is an 

impurity criterion (proposed by [8]) based on the 

measure of entropy. It is given by the following 

formula: 

𝐺𝑎𝑖𝑛(𝑎𝑖 , 𝑆) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, 𝑆) −

∑
|𝜎𝑎𝑖=𝑣𝑖,𝑗

𝑆|

|𝑆|𝑣𝑖,𝑗∈𝑑𝑜𝑚(𝑎𝑖) × 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑦, 𝜎𝑎𝑖=𝑣𝑖,𝑗
𝑆)    (2) 

where 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, 𝑆) = ∑ −
|𝜎𝑦=𝑐𝑖

𝑆|

|𝑆|𝑐𝑖 ∈𝑑𝑜𝑚(𝑦) ×

                                 𝑙𝑜𝑔2 (
|𝜎𝑦=𝑐𝑖

𝑆|

|𝑆|
)                           (3) 

Information gain computes the difference between 

entropy before split and average entropy after split of 

the dataset based on given attribute values. Intuitively, 

having subsets with minimal entropy is interesting. It 

is natural to sum these entropies by weighting them 

according to the proportion of records in each subset. 

2) Gini Index. The Gini index (i.e. gini impurity [6]) 

measures the divergence between the probabilities of 

the values of the target feature. 

𝐺𝑖𝑛𝑖(𝑦, 𝑆) = 1 − ∑ (
|𝜎𝑦=𝑐𝑖 

𝑆|

|𝑆|
)

2

𝑐𝑖∈𝑑𝑜𝑚(𝑦)                  (4) 

Using this measure, the attribute selection is made by 

taking the maximum of the following measure: 

 

𝐺𝑖𝑛𝑖𝐺𝑎𝑖𝑛(𝑎𝑖 , 𝑆) = 𝐺𝑖𝑛𝑖(𝑦, 𝑆) −

∑
|𝜎𝑎𝑖=𝑣𝑖,𝑗

𝑆|

|𝑆|𝑣𝑖,𝑗∈𝑑𝑜𝑚(𝑎𝑖) × 𝐺𝑖𝑛𝑖 (𝑦, 𝜎𝑎𝑖=𝑣𝑖,𝑗
𝑆)           (5) 

3) Gain Ratio Information gain is biased for the attribute 

with many outcomes. In order to solve this problem, 

C4.5 algorithm, uses an extension to information gain 

known as the gain ratio. It handles the issue of bias by 

takes the number and size of branches into account 

when choosing an attribute. It is defined as follows: 

            𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑎𝑖 , 𝑆) =  
𝐺𝑎𝑖𝑛(𝑎𝑖,𝑆)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑎𝑖,𝑆)
                  (6) 



Models & Optimisation and Mathematical Analysis Journal Vol.10 Issue 01 (2022) 

 

13 

 

III. DECISION TREE PRUNING 

Pruning is a machine learning technique that removes parts 

of a decision tree, which obtains the least amount of information 

in order to reduce the size of the tree. Thus, pruning aims to 

reduce the rate of prediction error. It is achieved through 

replacing a complete sub-tree with a leaf node, and the criteria 

of the process depend on the course of events, which allow to 

estimate the true flaw in that particular sub-tree. The algorithm 

for pruning is as follows: 

 

Algorithm 2: DecisionTreePruning(𝑆, 𝑇, 𝑦) 

Input: 𝑆: training set; 𝑦: target feature 

1:    InOut: 𝑇: the tree to be pruned 

2:    do 

3:         Select a note 𝑡 ∈  𝑇 such that pruning it maximally 

               improve some evaluation criteria; 

4:          if 𝑡 ≠ ∅ then 

5:                𝑇 ← 𝑝𝑟𝑢𝑛𝑒𝑑(𝑇, 𝑡)    

6:          end  

7:    while 𝑡 ≠ ∅; 

There are two types of decision tree pruning [10]: 

• Pre-pruning: if the tree stops growing before all 

examples of the training set are well classified. 

• Post-pruning: if the model is built entirely, pruning 

the elements that contribute to excessive learning. 

 
Fig. 1. Pruning the decision tree: sub tree replacement [10] 

Assuming the tree shown in the figure above, after examining 

all of its sub trees. By observing that the gain for a leaf exceeds 

that of the whole sub-tree, it is replaced by the leaf "bad". 

 

 

 

 

 

 

 

Fig. 2. Pruning the decision tree: new tree [10] 

IV. RUNNING EXAMPLE 

This part represents an example of a decision tree generation 

using the C4.5 algorithm. The example takes the dataset 

collected in a period of two weeks to decide if the weather is 

suitable for playing tennis, taking into account the following 

attributes: outlook, temperature, and wind, which have nominal 

values, as well as humidity, which has continuous values. 

TABLE I 

DATASET 𝑆 OF THE PLAYING TENNIS EXAMPLE [13] 

Day Outlook Temperature Humidity Wind Play 

1 Sunny Hot 85 Weak No 

2 Sunny Hot 90 Strong No 

3 Overcast Hot 78 Weak Yes 

4 Rain Mild 96 Weak Yes 

5 Rain Cold 80 Weak Yes 

6 Rain Cold 70 Strong No 

7 Overcast Cold 65 Strong Yes 

8 Sunny Mild 95 Weak No 

9 Sunny Cold 70 Weak Yes 

10 Rain Mild 80 Weak Yes 

11 Sunny Mild 70 Strong Yes 

12 Overcast Mild 90 Strong Yes 

13 Overcast Hot 75 Weak Yes 

14 Rain Mild 80 Strong No 

The present steps show the construction of the decision tree: 

1) Calculation of Entropy: 

The entropy of the dataset 𝑆 is given as follows: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =  −
9

14
× 𝑙𝑜𝑔2 (

9

14
) −

5

14
× 𝑙𝑜𝑔2 (

5

14
)

= 0.94 

2) Calculation of the information gain: 

The next step is to calculate the information gain for 

the four attributes in order to find the attribute which 



Models & Optimisation and Mathematical Analysis Journal Vol.10 Issue 01 (2022) 

 

14 

 

has the highest value. This attribute will be the root 

node. 

 

Calculation of entropies: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑆𝑢𝑛𝑛𝑦) = −
2

5
× 𝑙𝑜𝑔2 (

2

5
) −

3

5
× 𝑙𝑜𝑔2 (

3

5
)

= 0.9710 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑅𝑎𝑖𝑛) = −
3

5
× 𝑙𝑜𝑔2 (

3

5
) −

2

5
× 𝑙𝑜𝑔2 (

2

5
)

= 0.9710 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡)

= −
4

4
× 𝑙𝑜𝑔2 (

4

4
) − 0 × 𝑙𝑜𝑔2(0)

= 0 

Calculation of the information gain: 

𝐺𝑎𝑖𝑛(𝑆, 𝑂𝑢𝑡𝑙𝑜𝑜𝑘)
= 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆)

−
5

14
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑆𝑢𝑛𝑛𝑦)

−
5

14
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑅𝑎𝑖𝑛)

−
4

14
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡)

= 0.94 −
5

14
× 0.9710

−
5

14
× 0.9710 −

4

14
× 0 

 

𝐺𝑎𝑖𝑛(𝑆, 𝑂𝑢𝑡𝑙𝑜𝑜𝑘) = 0.2467 

 

As well we find for the other discrete attributes: 

𝐺𝑎𝑖𝑛(𝑆, 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 0.0292 

𝐺𝑎𝑖𝑛(𝑆, 𝑊𝑖𝑛𝑑) = 0.0481 

 

For an attribute of continuing value such as humidity, the 

C4.5 algorithm manages the calculation of information gain as 

follows: 

1) The first step is to sort the humidity attribute values, 

from the smallest to the largest, and to remove 

duplicate values. The set of sorted values is as follows: 
{65, 70, 75, 78, 80, 85, 95, 96} 

2) As a second step, after sorting all the examples in 

ascending order for the attribute humidity, C4.5 

proposes to perform a binary division for each of value 

𝐴𝑖, taking all instances lower than or equal to the 

current value 𝐴𝑗 ≤ 𝐴𝑖, and also all instances higher 

than the current value 𝐴𝑖 > 𝐴𝑗. Then, it calculates the 

gain and finds the value that brings the best gain which 

would be the threshold. 

 

It applies formula (1) to obtain the entropy and 

formula (2) to get the information gain. The table II 

summarizes the gain calculation for the attribute 

continuous humidity. 

Therefore, the value which brings the best gain is associated 

to the threshold which is equal to 80 for humidity. 

𝐺𝑎𝑖𝑛(𝑆, 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦)  =  0.102 

According to the comparison, the attribute "Outlook" with the 

highest value of information gain is the root node of the tree 

structure. 

This root has three values: "Sunny'', "Overcast'' and "Rain''. 

At this point, the tree will be divided into three sub-trees. 

 

 

 

 

 
 

 

 

 

 

 

All the steps of the partition are applied recursively on the 

new subsets, and, in order to form a tree structure, all these 

nodes become leaves. 

• The first sub-tree associated with outlook as 

"Sunny'': 

 

 

Calculation of entropy: 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑆𝑢𝑛𝑛𝑦) = −
2

5
× 𝑙𝑜𝑔2 (

2

5
) −

3

5
× 𝑙𝑜𝑔2 (

3

5
)

= 0.9710 

Calculation of the information gain: 

𝐺𝑎𝑖𝑛(𝑆𝑆𝑢𝑛𝑛𝑦, 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 0.5710 

𝐺𝑎𝑖𝑛(𝑆𝑆𝑢𝑛𝑛𝑦, 𝑊𝑖𝑛𝑑) = 0.0200 

𝐺𝑎𝑖𝑛(𝑆𝑆𝑢𝑛𝑛𝑦, 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦) = 0.971 

After comparison, humidity produces the best 

information gain, in case the outlook is sunny. 

Thus, when the value of the humidity attribute is less 

than or equal to 70, the decision will correspond to 

the class ''Yes''. 

Finally, when the value of the humidity attribute is 

greater than 70, the decision will correspond to the 

class ''No''. 

 

 

 

 

Day Temperature Humidity Wind Play 

1 Hot 85 Weak No 

2 Hot 90 Strong No 

8 Mild 95 Weak No 

9 Cold 70 Weak Yes 

11 Mild 70 Strong Yes 

Outlook 

? ? ? 
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• The second sub-tree associated with outlook as 

“Overcast”: 

 

Calculation of entropy: 

     𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡) = −
5

5
× 𝑙𝑜𝑔2 (

5

5
) −

0

5
× 𝑙𝑜𝑔2 (

0

5
) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡) = 0 ⇒ So this sub-tree is perfectly 

classified 

As a result, when the “Outlook” attribute is “Overcast”, all 

examples belong to the positive class, so it returns the leaf 

node “Yes”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             

 

 
 

 

 

 

 

 

 
 

 

 

• The second sub-tree associated with outlook as 

“Rain”: 

Calculation of entropy: 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑅𝑎𝑖𝑛) = −
3

5
× 𝑙𝑜𝑔2 (

3

5
) −

2

5
× 𝑙𝑜𝑔2 (

2

5
)

= 0.9710 

Calculation of the information gain: 

𝐺𝑎𝑖𝑛(𝑆𝑅𝑎𝑖𝑛 , 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 0.0200 

𝐺𝑎𝑖𝑛(𝑆𝑅𝑎𝑖𝑛 , 𝑊𝑖𝑛𝑑) = 0.9710 

𝐺𝑎𝑖𝑛(𝑆𝑅𝑎𝑖𝑛 , 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦) = 0.322 

After comparison, wind produces the best 

information gain, in case the outlook is rain. 

Thus, when the value of the humidity attribute is 

weak, the decision will correspond to the class 

''Yes''. 

Humidity 65 70 75 78 80 85 90 95 96 

Interval ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > 

Yes 1 8 3 6 4 5 5 4 7 2 7 2 8 1 8 1 9 0 

No 0 5 1 4 1 4 1 4 2 3 3 2 4 1 5 0 5 0 

Entropy 0 0.96 0.81 0.97 0.72 0.99 0.65 1 0.76 0.97 0.88 1 0.92 1 0.96 0 0.94 0 

Gain 0.048 0.015 0.045 0.09 0.102 0.025 0.010 0.048 0 

Day Temperature Humidity Wind Play 

3 Hot 78 Weak Yes 

7 Cold 65 Strong Yes 

12 Mild 90 Strong Yes 

13 Hot 75 Weak Yes 

Day Temperature Humidity Wind Play 

4 Mild 96 Weak Yes 

5 Cold 80 Weak Yes 

6 Cold 70 Strong No 

10 Mild 80 Weak Yes 

14 Mild 80 Strong No 

TABLE II 

GAIN CALCULATION FOR THE ATTRIBUTE CONTINUOUS HUMIDITY USING C4.5 ALGORITHM 

O
v
ercast 

Outlook 

Humidity ? 

No 

Yes 

Yes 

O
v
ercast 

Outlook 

Humidity ? 

No 

? 

Yes 
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Finally, when the value of the wind attribute is 

strong, the decision will correspond to the class 

''No''. 

The DT procedure (see Algorithm 1) lasts until the 

following decision tree is generated: 

 

 

                                 

 

 
 

 

 

 

 

 

 
 

 

 

The decision tree can also be expressed in the form of decision 

rules: 

If Outlook = sunny and Humidity <  70 Then Play = no 

If Outlook = sunny and Humidity ≤ 70 Then Play = yes 

If Outlook = overcast Then Play = yes 

If Outlook = rain and Wind = weak Then Play = yes 

If Outlook = rain and Wind = strong Then Play = no 

V. RELATED WORK 

There are few studies that focused on predicting the presence 

of COVID-19 for a given human being. However, in this 

section, we concentrate on the research works related involving 

the use of a decision tree algorithm to predict positive Covid-

19 cases. Riana et al. [4] introduced a supervised approach to 

make a diagnosis of surveillance classification using the C4.5 

algorithm. The results indicated that the COVID-19 

surveillance diagnostic was successfully modeled into a 

decision tree classification using the C4.5 algorithm. The 

accuracy rate of the testing process in a confusion matrix with 

three classes is equal to 92.86%. Another C4.5 machine 

learning classifier is also used in the  work of Nanda et al. [3]. 

According to the results, the algorithm helps in obtaining a 75% 

accuracy rate. Our work is different in the sense that it consists 

to build a robust prediction model using an optimized decision 

tree algorithm. The optimization step allows having a classifier 

with the best compromise between the learning accuracy and 

prediction generalization for the unseen tuples.   

 

 
2 https://scikit-learn.org 

VI. EXPERIMENTAL EVALUATION 

In this section, we experimentally evaluate our fast learning 

framework for predicting COVID-19 infections.  

A. Experimental protocol:  

Our experiments were conducted using real datasets and 

according to the following protocol:  

1) Hardware environment. Our DT model was trained and 

tested on a PC with an Intel Core i5 processor, 2.70 GHz 

and 8GB memory and with Windows 10, 64-bit operating 

system. Besides, our mobile application (which embeds the 

resulting DT prediction model in the form of decision 

rules) was deployed and tested on a mobile phone Samsung 

J4 having ARMv7-A CPU, 2GB memory, and 32GB 

storage capacity. 

2) Software environment. Our Decision Tree-based 

classifier was implemented using the well-known Scikit-

Learn python library2 using the Gini impurity criterion [6], 

whereas the cross-platform mobile application was 

implemented using a couple of web development 

frameworks (Ionic.v5, Angular.v8, NodeJs, Cordova, 

SQLite) and programming languages, namely, TypeScript, 

HTML5, CSS, SQL. The full source code is publicly 

available here [1], whereas the dataset can be provided 

upon request.  

3) Benchmark dataset. We have considered a dataset about 

real 270 PCR (Polymerase Chain Reaction) tests for 

COVID-19 provided by the university hospital center 

(CHU) of Algiers (the capital of Algeria). Several 

information were collected from each patient, such as AGE, 

FIEVRE, ECOULEMENT', CEPHALEES, IRRITABILI, 

ASTHENIE, DIARRHEE, TABAC, DIABETE, etc. The 

class label is given by the PCR result that we which to learn 

inductively.  

Before building our model, we went through an essential 

step in the success of any machine learning project, which 

is data cleaning and preprocessing. The cleaning step 

consisted to eliminate some lines (patients) having some 

missed values. In the preprocessing step, we verified that 

there is not some classes that dominate the dataset, as this 

may most likely lead to biased trees. So, it is highly 

recommended to balance the dataset prior to fitting with 

the decision tree. Next, we proceed with a cross-validation 

procedure and divide the data set into 80% for the training 

dataset and 20% for testing the model. 

4) Decision tree optimization. There are two kinds of 

misclassification: (i) Training error, which is the number 

of misclassification errors committed on training records, 

and the (ii) Generalization error, which is the expected 

error of the model on previously unseen records. So, a good 

model must have low training error as well as low 

generalization error so as to avoid undesirable situations, 

namely model (under or) overfitting. We have used the 

built-in Scikit-learn pre-pruning optimization to produce a 

DT with the best trade-off between both training and 

generalization errors. 

O
v
ercast 

Outlook 

Humidity 

No 

Yes 

Yes 

Wind 

Yes No 
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5) Model accuracy evaluation. To assess the effectiveness 

of our classification model we use a confusion matrix, 

which is a contingency table that measures the performance 

of a machine learning model, typically a supervised 

learning algorithm. It allows analyzing the frequency with 

which the results of predictions are accurate compared to 

the reality in classification problems. We also recall the 

four main terminologies used to define quality metrics 

related to the prediction capability of an actual COVID-19 

infection, which correspond to:  

• TP (True Positive): the number of patients correctly 

classified as carriers of the COVID-19 virus. 

• TN (True Negative): the number of correctly classified 

patients who are in good health. 

• FP (False Positive): the number of misclassified patients 

who are in good health. 

• FN (False Negative): the number of misclassified patients 

carrying the COVID-19 virus.  

B. Experiment results  

Results given by our optimized decision tree. In order to 

qualitatively assess our approach, we summarize the prediction 

results of our decision tree classifier (see figure 5) using 30 new 

patients, and then compare them to the expected values using 

the following confusion table:  

 

 ACTUALLY: +(1) ACTUALLY: –(0) 

PREDICTED: +(1) TP = 21 FP = 3 

PREDICTED: –(0) FN = 1 TN = 5 

 

Based on this table, we can extract enough information to 

calculate various performance statistics including precision 

and recall metrics.  

• Precision is the frequency in which the number of the 

predicted positive class actually belongs to the positive 

class.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (7) 

 

• Recall which is sometimes referred to as ``sensitivity'', is a 

metric that quantifies the number of correctly identified 

positive predictions among all of the positive predictions 

that could have been made. 

        𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (8) 

 

For our approach, we obtained the following results: 

− Precision = 0.87 

− Recall = 0.95 

 

Additionally, we use the harmonic mean which combines 

both precision and recall into a single score. Formally, it is 

defined as follows:  

        𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
      (9) 

In our case the value of F1 Score is equal to 0.91. 

Overall, we found that the evaluation results are quite good 

in terms of being able to better distinguish patients carrying the 

COVID-19 virus, from those who are healthy by reaching the 

value of the F1 Score of 0.91, where the ideal value for F1 

Score is 1 and the worst value is 0. 

Results using a classical decision tree. The main goal of 

this section is to show to what extent the optimization step 

allows us to avoid the model overfitting problem, while 

maximizing the prediction generalization of the proposed 

classifier. To this end, we have performed the same experiments 

on the preprocessed COVID-19 dataset, and according to the 

same cross-validation procedure, except that we do not consider 

the optimization step when producing the decision tree 

classifier.  In this case, we obtained the following results: (i) A 

precision value equals to 0.63 instead of 0.87 for the optimize 

DT; (ii) A recall value of 0.54, whereas the optimized classifier 

provides a value of 0.95, which is quite superior compared to 

the classical version; and finally (iii) The F1 Score is equal to 

0.56, which remains a poor result compared to our optimized 

decision tree, where the F1 Score was equal to 0.91. 

These results can be explained by the fact that the classical 

decision tree classifier  tries to be as perfect as possible, by 

increasing the decision tree depth of required tests in order to 

minimize the classification error (in the training phase). 

However, this may lead to very complex decision trees and 

most probably ends with overfitting (see figure 6), with a severe 

lack in terms of prediction capabilities (do not generalize the 

data well). Unlike the classical model, the optimized classifier 

tends to reduce the required information to classify the tuples 

(i.e. the number of tests that are needed to classify a given tuple) 

using a subset of attributes having the highest information gain.   

C. Proof-Of-Concept: A decision Aid Mobile Application for 

COVID-19 prediction. 

In the context of a healthcare emergency, we opted for 

optimized decision trees (with pruning) in order to effectively 

tackle the COVID-19 pandemic (in Algeria country), using the 

Sci-kit Learn python library and a handy mobile application. As 

explained above, we have used, in our experiments, real 

COVID-19 datasets provided by the CHU (university hospital) 

of Algiers (the capital city of Algeria). The resulting DT is 

provided and illustrated in [1].  

 

The first page of our mobile application represents the 

graphical interface of the home page, it gives the user an idea 

of the different functionalities of the application, see figure 3. 

Our cross-platform mobile application exploits the resulting 

decision tree classifier described in sections II and III. 
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Fig. 3.  Home page of the COVID-19 application. 

 

 

We have designed and developed jointly with a medical 

expert a form page to collect the data needed from a patient to 

analyze and predict infection by COVID-19, see figure 4. 

 

 
 

Fig. 4.  A form page to gather data from a patient 

 

• First, the user (doctor) of our mobile application will fill in 

the information related to a patient. In the meantime, we 

display error messages whenever the doctor makes a 

mistake in this step.  

• The second step involves a set of questions about the most 

common symptoms of COVID-19 (e.g. 'FIEVRE', 

'ECOULEMENT', 'CEPHALEES', 'IRRITABILI', 

'ASTHENIE', 'DIARRHEE', 'TABAC', 'DIABETE', etc.). 

• The third step focuses on a patient's medical history, which 

includes illnesses (chronic, serious), as well as other 

complementary questions in order to define a specific risk 

factor and make a more fine-grained decision. 

VII. CONCLUSION  

In this paper, we have proposed a fast operational machine 

learning approach based on optimized decision trees in order to 

mitigate the effects and the spread of the COVID-19 pandemic 

crossing international boundaries, while realizing a good 

compromise between prediction accuracy and generalization. 

Experimental results on a real dataset have demonstrated that 

our DT-based approach is well suited to predict potential 

COVID-19 infection with high accuracy. The proposed 

approach is packaged as a proof-of-concept cross-platform 

mobile application for predicting a possible COVID-19 

infection, thereby minimizing the potential burden of the 

pandemic on our society.  
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Fig. 5.  Optimized decision tree of the COVID-19 classifier 
 

 

 
Fig. 6.  Classical decision tree of the COVID-19 classifier 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 


