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Abstract 

A three-dimensional numerical study of the convection heat transfer in a simulated Czochralski system is conducted .In this 
work, the numerical investigation were performed to analyze the free convection in the Czochralski crucible and the 
temperature fluctuations(thermal instabilities) just below the melt-crystal interface. We used the Finite Volume Method in 
cylindrical coordinates and the Fast Fourier Transform method for study the free convection, the temperature fluctuations  
2 mm near the interface by taking into account the case of non-rotating crystal. In this study the heat transfer, thermal 
instabilities, melt natural convection, radiative heat transfer, Marangoni convection were conducted for Al2O3 melt in the 
crucible. Our objective is to show the fluctuations of temperature just below the interface by taking into account the effect of 
Rayleigh number for determining the crucible heating temperature value, and display the problem and his solution of the 
natural convection in the Czochralski crucible.  
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1. Introduction 

     In  a number of modern high-technology applications, 

sapphire single crystals are used widely in several systems. 

Sapphire (Al2O3) is a very important material because of its 

specific structure and its exceptional optical, thermal and 

electrical properties, [1]. In different and various systems 

and applications, Al2O3 is used widely in optical systems, 

needles for laser therapy and medical power delivery 

systems watch windows, cellular phone glasses, optical 

fibers, and in wave guides for surgery [2, 3]. We also cite 

the use of this material as a optical window material and, 

filter material for thermal neutron beams and a substrate 

material for the epitaxial deposition [4]. Many crystal 

growth methods have been used to grow this material. 

Among these techniques the Czochralski (Cz) is an 

excellent commercial process for growing larger, high 

optical-quality sapphire crystals with fewer defects. The 

temperature distribution and convection of molten 

sapphire during the manufacturing process influence 

largely on the properties and on the growth behavior of 

sapphire crystals.  

Different types of heat transfer mechanism coexist in the 

Czochralski growth setup which are convection, 

conduction and radiation within the melt, conduction and  

 

radiation within the grown crystal, gas convection and 

radiative heat exchange between the exposed surfaces. 

Several researchers studied the convective heat transfer 

such as melt hydrodynamics [5–8], melt and gas flow 

pattern [9–11] and influence of the melt convection mode 

on the shape of the crystal-melt interface with respect to 

physical and geometrical parameters of the melt and 

growth configuration [12–18]. Detailed analyses of the 

interface shape, transition and its inversion during growth 

of high melting oxide crystals can be found in several 

reports [19, 20]. In the Czochralski process the melt 

convection is mainly induced by natural convection due to 

the buoyancy and surface tension effect, forced convection 

due to the crystal and crucible rotation and 

electromagnetically induced convection if the 

electromagnetic field is applied. In these convections, the 

melt natural convection cannot be eliminated and is 

strongly influenced by temperature distribution along the 

crucible wall. In this work the melt natural convection, 

heat transfer, temperature fluctuations (thermal 

instabilities), were conducted for Al2O3 melt in the Cz 

crucible. The finite volume method and the Fast Fourier 

Transform are used for study the temperature fluctuations 

near the crystal/liquid interface. Our objective is to reduce 

the fluctuations of temperature just near the interface by 

taking into account the case of non-rotating seed. The 
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heating temperature of the crucible walls is calculated by 

studying the effect of Rayleigh number on the temperature 

fluctuations in the crucible. In this analysis, we consider 

that the crystal-melt interface and the melt free surface are 

flat; the crystal and crucible are not rotated. 

In the next section we present the modeling growth 

system using the Czochralski technique. In Section 3 we 

present the mathematical formulation of our model that is 

the governing equations, the boundary conditions and the 

numerical scheme used in our simulations. Section 4 is 

devoted to the results and discussion, followed by 

conclusions in section 5.  

2. Model of Czochralski growth system 

     The model for Czochralski crystal growth furnace is 

schematically illustrated in Fig. 1. In this process, the melt 

(sapphire) is placed in a cylindrical crucible (see fig.2), 

located in a furnace.  

       

       In the sapphire case, the crucible walls are heated 

above the melting temperature 𝑻𝒄𝒓𝒖𝒄𝒊𝒃𝒍𝒆 ≈ 𝟐𝟑𝟕𝟑 𝑲  by a 

radiofrequency inductive heating system. The production 

of a cylindrical crystal due to the phase change phenomena 

with connection between the liquid and the sapphire seed 

at the crystal-melt interface. The crystal produced is 

vertically pulled out of the melt as shown in the schematic 

diagram below: 

 

 

 

 
 

 

Figure 1. Schematic model of the inductively heated 

Czochralski furnace. 

 

Fig. 2 shows the crucible geometry which depends on 

the Czochralski technique. In our simulation we use a 

crucible with a height of 0.1 m, a diameter of 0.1 m and 

an interface with a diameter of 0.03 m. The melt sapphire 

is presented with the red color, the melt - crystal interface 

displayed with the blue color, the green color presents the 

sapphire melt free surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic diagram of the Czochralski crucible. 

 

2.1. Mathematical  model 

 

The fundamental equations consist the continuity 

equation, the momentum equation and the energy 

equation. The melt is assumed incompressible and 

Newtonian, while the flow is laminar. In a pure sapphire 

melt, free convection, Marangoni convection (Surface 

tension driven flow), and radiation are to be considered. 

These flows are satisfactorily expressed by the unsteady 

state Navier-Stokes equations with Boussinesq 

approximation and the continuity equation in cylindrical 

coordinates (𝑟, 𝜃, 𝑧). The flow, the heat transfer are 

modeled by the following differential equations: 

 

Equation of  radial component of the momentum: 
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Equation of azimuthally component of the momentum   
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Equation of axial component of the momentum: 
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         Where 𝒖, 𝒗, 𝒘  are the fluid velocity components in 

the (𝒓, 𝜽, 𝒛) direction, 𝝆𝒎 is the melt density, 𝒑 is the 

pressure, 𝝂 is the kinematic viscosity, 𝒈𝒓, 𝒈𝒛 are the radial 

and axial accelerations due to gravity. is the thermal 

expansion coefficient, The temperature in a unsteady state 

is given by energy equation: 

 

 

Energy equation: 
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Where 𝑻 is the temperature, and 𝜶 is the thermal 

diffusivity. In this case the viscous dissipation is neglected. 

   

Continuity equation:  
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2.1.1 Presentation of the grid used 

 

        In the figure.3 we shows the mesh grid which has 

been used to solve numerically the above equations. The 

physical domain is in cylindrical coordinates was 

subdivided into a finite number of contiguous volumes 

(CV) of volume V with a number of nodes 149792 and 

0.01 for time step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Three-dimensional mesh for calculation of 

Czochralski crucible. 

 

 

 Boundary conditions 

          The cylindrical crystal is growing from the melt in a 

cylindrical crucible. The crystal growth model used for 

numerical simulation is shown in fig. 2. It is assumed that 

the solute is uniformly distributed in the melt reservoir, the 

crucible temperature is homogeneous, the interface shape 

and melt free surface are planar, the interface crystal-melt 

is at the melting point  𝑻𝒎. With these assumptions, we 

present below a description about the boundary conditions 

simulations for the velocity and temperature: 

- At the crystal-melt interface: 

𝟎 ≤ 𝒓 ≤ 𝑹𝑺  , 𝟎 ≤ 𝜽 ≤ 𝟐𝝅, 𝒁 = 𝑯 
 
𝒖 = 𝟎, 𝒗 = 𝑹𝑺𝝎𝑺 = 𝟎, 𝒘 = 𝟎  

 

𝑇 = 𝑇𝑚  

 
Where 𝜔𝑆  is the disc rotation speed and 𝑹𝑺, 𝑹𝑪  is the 

radius of the crystal (disc) and of the crucible 

respectively.. 

- At the melt free surface: 

𝑅𝑆 ≤ 𝑟 ≤ 𝑅𝐶   , 0 ≤ 𝜃 ≤ 2𝜋, 𝑍 = 𝐻 
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        The heat transfer from the melt free surface to the 

ambient is controlled by both radiation and convection 

according to the energy balance along the melt free 

surface:  

𝑛. 𝑘𝑚∇   𝑇 = −𝐵𝑖 𝑇 − 𝑇𝑎 + 𝑅𝑎𝑑 𝑇4 − 𝑇𝑎
4  

        Where 𝐧 is the unit normal vector on the melt 

surface pointing outwards; 𝐤𝐦 is the thermal conductivity 

of the melt. 𝑩𝒊 = 𝒉𝑯 𝒌𝒎    is the Biot number where the 

𝐡 is heat transfer coefficient . In this study the ambient 

temperature 𝑻𝒂 is set to be a constant. The radiation 

number 𝐑𝐚𝐝   is defined by: 

𝑹𝒂𝒅 = 𝝇 𝜺𝒎  𝑹𝒄 − 𝑹𝒔 𝑻𝒎
𝟑 𝒌𝒎  

 

        This condition is more practical when the radiative 

heat exchanges between the melt sapphire free surface and 

the surrounding surfaces such as the exposed After heater 

wall and crystal side surface are considered. 

 Where: 

𝝇  is the Stefan—Boltzmann constant, while  𝜺𝒎 is the 

surface emissivity of the sapphire melt and 𝑻𝒎 the melting 

point of sapphire . 

       In the free surface, the three components of the 

velocity are deduced from Marangoni convection; where 

the tangential stress balance is required: 

𝑛𝑠: 𝑡 = 𝑀𝑎 𝑠. ∇𝑇  

      Where 𝒔  is the unit tangent vector at the free 

surface, 𝒕 is the shear stress tensor.  𝑴𝒂  is the Marangoni 

number that is a measure of surface tension driven flow 

and is defined by: 

𝑀𝑎 =  
𝜕𝛾

𝜕𝑇
  𝑅𝐶 − 𝑅𝑆  ∆𝑇 (µ𝑚𝛼𝑚 )  

 

Where  𝜕𝛾 𝜕𝑇  is the surface-tension temperature 

coefficient,  µ𝑚  the melt viscosity and ∆𝑇 is the 

temperature difference between the crystal-melt interface 

(disc) and the crucible side. 

 

At the crucible side: 

 

𝑅 = 𝑅𝑐  , 0 ≤ 𝑍 ≤ 𝐻 

 

The temperature at the crucible side wall, was set by the 

radio frequency generator. 

 

𝑇 = 𝑇𝑚 + ∆𝑇 = 𝑇𝐶  
 

𝑢 = 0, 𝑣 = 0, 𝑤 = 𝑅𝑐𝜔𝐶 = 0 

        The temperature difference ∆𝑇 between the crystal-

melt interface and the crucible side is about ∆T ≈
 45to50 K above the melting point of sapphire (𝑇𝑚 =
2323 𝐾).  Where  TC   is the temperature of crucible equal 

to 2373 𝐾 ; it is the value that is used experimentally to 

heat the crucible [21]. 

 

 

At the crucible bottom: 

 

−𝑅𝑐 ≤ 𝑟 ≤ 𝑅𝑐 , 𝑧 = 0, 0 ≤ 𝜃 ≤ 2𝜋  
 

𝑢 = 0, 𝑣 = 𝑟𝜔𝐶 = 0, 𝑤 = 0 

 

𝑇 = 𝑇𝐶 

 

Where 𝜔𝐶  is the crucible rotation speed. 

3. Results  and discussions 

    The properties and growth behavior of sapphire crystals 

are influenced largely by the temperature distribution and 

convection of molten sapphire during the manufacturing 

process. For this raison we study the heat transfer, natural 

convection, effect of the Rayleigh number and Marangoni 

convection in the crucible Czochralski technique. We use 

vertical and horizontal sections to show convection 

phenomena that are very interesting and play an important 

role in the quality of the crystal produced.  

 

3.1. Effect of the Rayleigh number (Free convection) 

     In this paper we study the effect of the thermal Rayleigh 

number 𝑅𝑎𝑇  on the heat transfer and on the flow in the 

Czochralski crucible i-e the free convection in the growth 

system with non rotating crystal (seed)  (𝑅𝑆𝜔𝑆 = 0): 

 

Where the Rayleigh number is defined as : 

 

𝑅𝑎𝑇 = 𝐺𝑟. 𝑃𝑟 =
𝑔0𝛽𝑇∆𝑇𝐻

3  

𝛼𝑚𝜈
= 5 × 105 

𝐺𝑟 =
𝑔0𝛽𝑇∆𝑇𝐻

3  

𝜈2
  𝑎𝑛𝑑  𝑃𝑟 =

𝜈

𝛼𝑚

 

Gr  is the Grashof number due to the temperature 

difference between the melt-crystal interface and crucible 

and Pr  is the Prandtl number. 

The numerical simulations were performed for the Al2O3 

melt under the following conditions. The radius of the 

crucible is 𝑅𝑐 = 0.05 m, the radius of the disc is 𝑅𝑠 =
0.015 m  and the height of the crucible is 𝐻 = 0.1 m. The 

adimensional numbers in our case are 𝑅𝑎𝑇 = 5 × 105 

and 𝑃𝑟 = 10.382. The properties of sapphire (Al2O3) 

used in our simulation are presented in [21, 22, 23] and 

the references therein. 
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3.1.1 The axial temperature 
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Figure 4. Axial temperature profile for different Rayleigh 

number. 

 

 

             Axial temperature profile plotted from the 

crucible bottom to the crystal-melt interface is shown in 

Figure 4. This figure indicates different axial temperature 

gradients which arise from heat transfer modes along the 

axis of symmetry of crucible. An inflection temperature is 

observed at the crystal-melt interface which is regarded to 

different temperature gradient of melt and crystal in that 

area. This results show the effect of the Rayleigh number 

= (2 − 10) × 105 ; where the maximum value of 

temperature is 𝑇𝑚𝑎𝑥 = (2343 –  2423) 𝐾 at the crucible 

side wall and at the crucible bottom edge. Below the melt 

surface the  𝑇𝑚𝑖𝑛 = 2323 𝐾 at crystal-melt interface. For 

all the case, the maximum value of temperature difference 

across the melt is  ∆𝑇𝑚𝑎𝑥
𝑚𝑒𝑙𝑡 = (47 − 100) 𝐾 . We notice 

that for low values of Ra the temperature is almost 

constant along the vertical axis. 

 

3.1.2 The radial temperature 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5. Temperature profile just below the melt free 

surface (z = 0.098 m). 

 

         Fig.5 shows the radial temperature just below the 

melt free surface. We notice that the radial temperature 

increases with increasing Rayleigh number, approaching 

the center of the melt - crystal interface for Rayleigh 

numbers greater than 3 × 105. For a Rayleigh value equal 

to 2 × 105 the temperature is almost constant along the 

interval of the melt - crystal interface. After this value we 

notice and the shape of the temperature profile changes 

from a convex shape to a concave shape. For the Rayleigh 

value equal to 0 we notice that the shape profile changes 

from a concave shape as well shown in Fig.5 with black 

color. 

3.2. Contour and profile of velocity 

3.2.1 Profile of radial velocity 

         In this part, we present the radial, axial, tangential 

and magnitude velocity profiles 2 mm under the sapphire 

melt free surface (z = 0.098 m). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Radial velocity profile just below the melt free 

surface (z = 0.098 m). 

 
           The negative signal of the values of the radial 

velocity shown in figure 6 does not show that the radial 

velocity is negative but that the direction of the velocity is 

in the opposite direction. According to these curves we 

observe that there is symmetry in the radial flow; on the 

other hand we notice that the radial velocity of the fluid 

particles increases when the heating temperature of the 

crucible increases (number of Rayleigh increases). 

For zero Rayleigh’s number, it is clear that the values of 

the radial velocity are relatively higher that the other values 

of the Rayleigh number. 

 

3.2.2 Profile of axial velocity 

         Fig. 7 shows the axial velocity profile at 2 mm just 

below the free surface (z = 0.098 m). We notice that there 

is symmetry of the axial flow in the crucible. The axial 

velocity of the fluid particles increases and takes a 

maximum value just close to the center of the crucible 

exactly at the two boundaries of the liquid-solid interface (-
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0.015 m and 0.015 m). In the center of the crucible and 

along its vertical axis (from -0.015 m to 0.015 m), we 

notice that the axial velocity decreases and forms different 

trajectories (concave and convex); where the symmetry 

always is conserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Axial velocity profile just below the melt free 

surface (z=0.098m). 

 

3.2.3 Profile of tangential velocity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Tangential velocity profile just below the melt 

free surface (z=0.098m). 

 

         From this figure we notice, that there is no 

symmetry of the tangential velocity profiles relative to 

the symmetry axis of the crucible. We know that causes 

the defects in the produced crystal but when the 

tangential velocity takes a high values.  In our case as 

shown in figure The non-symmetry indicates that the 

flow in the crucible begins to take a relatively three-

dimensional form but it does not appear clearly in the 

contours because the values of the tangential velocity are 

very small (almost null). It shows the importance of the 

representation of profiles in this case to properly analyze 

what happens inside the crucible. 

 

3.2.4 Contour and profile of velocity magnitude  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Velocity magnitude profile 2 mm under the melt 

free surface (z = 0.098 m). 

 

         Velocity magnitude is presented in fig .9 It is clear 

that the velocity of the fluid particles is maximal at the 

symmetry axis of the crucible, this results confirmed by the 

contour of velocity magnitude.  

 

3.2.5 Contours of velocity 

 

        In the figure below we present the contours of 

velocity in the Czochralski crucible. According these 

results, it is noted that the flow of the fluid is two-

dimensional in the plane (r, z) because of the tangential 

velocity which is almost null as shown in Fig 10: (d). 

 

 

  

  
 

 

Figure 10. Presentation of the contours of velocities:  

(a): axial velocity; (b): radial velocity; (c): velocity 

magnitude; (d): tangential velocity. 

 

         It is clear that the velocity of the fluid particles is 

maximal at the symmetry axis of the crucible as it is 
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presented by the red color in the contour of velocity 

magnitude Fig 10: (c). In this case the axial flow is dominant 

in relation to the radial flow.  

        In the lower part of the crucible, the contour of the 

radial velocity indicates the presence of two contrarotating 

cells expressing natural convection (red color, fig10: (b)).  

        In the contour of radial velocity, at the upper part of 

the crucible, we clearly see the thermocapillary effect 

represented by the two convection cells (Marangoni 

convection) which are induced by the gradients of surface 

tensions. These two cells are well presented in the radial 

profile velocity Fig 6 by the tow maximum values of this 

velocity. 

        Tangential velocity is almost null that is showing in 

the contour (d) with green color, this keeps the flow two-

dimensional in the crucible. The problem of the free 

convection in the Cz process is the high value of 

temperature fluctuations as showing in figs.12 and 13.  

 

4. Illustration of unsteady state heat Transfer in the 

Czochralski crucible. 

 

 

 

 
 

Figure 11. Heat transfer in the Cz crucible (Unsteady 

state). 

 
         According to these results, we notice that after a 

growth time equal to 150 s the steady state is reached. The 

contour of the temperature in the unsteady state (from 10 s) 

indicates a cold jet descending from the liquid solid 

interface through the axis of symmetry of the crucible. We 

also notice that at the top of the crucible there is an 

inclination of the isotherms near the side wall which 

indicates the presence of the Marangoni convection 

induced by the gradients of surface tensions.  

        We now that there are flows that begin in a aleatory 

way (non-symmetrical), after a certain growth time the flow 

takes a symmetry form in the crucible. In the case of 

sapphire, we notice that from the first growth time to the 

steady state, the sapphire flow is symmetrical along the 

unsteady state. 

 

4.1 Analysis of fluctuations temperature 

         In order to study the thermal instabilities just below 

the liquid/solid interface, temperature fluctuations are 

analyzed for different proposed points as showing in the fig 

below. This study is performed using the Fast Fourier 

Transform method. Our simulation was conducted taking 

into account the none rotating of crystal, free convection in 

the Cz crucible, radiative heat transfer and Marangoni 

convection at the sapphire melt free surface. 

        To located the positions which have large 

fluctuations, five points were taken in the plane z = 0.098 

m (2 mm below the crystal-melt interface.) P0 (0, 0, 0.098), 

P1 (0.015, 0, 0.098), P2 (0, 0.015, 0.098), P3(-0.015, 0, 

0.098), P4(0, -0.015, 0.098).  

        Fig.12 shows the temperature fluctuations magnitude 

as a function of the frequency for the five points chosen 

just below the melt-crystal interface.   
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        Figure 12. Temperature fluctuations at various positions 

just below the crystal-melt interface free convection. 

 

        According to this figure, we notice that for the point 

P4 the amplitude of fluctuations is higher than those found 

for the points P0, P1, P2 and P3. So P4 is the point 

adopted for our analysis. 

 

        In the next part, we have also conducted a analysis of 

the temperature fluctuations just near this interface for 

different proposed Rayleigh number using Fast Fourier 

Transform (FFT). The results obtained are presented in 

Fig.13.  

        For the first lower frequency, it is noted that the 

magnitude spectrum increases with the increase of the 

Rayleigh number. Between the both values 0.05 and 0.1 

Hz we notice that the magnitude of temperature increases 

with the increase of Ra number except for Rayleigh = 5E5. 

In this case that corresponds to ∆𝑇 = 50 𝐾 the magnitude 

take the lower value as showing in the below figure. After 

the frequency value 0.1 Hz, it is clear that the magnitude 

spectrum does not depend on the Rayleigh number in a 

simple way. 
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Figure 13. Magnitude of temperature fluctuations in the P4 

position for various Rayleigh number. 

 

      In this case, we can say that the temperature suitable 

for heating the crucible is 𝑇𝑐𝑟𝑢 = 𝑇𝑚 + ∆𝑇, i.e. d 𝑇𝑐𝑟𝑢 =
2323 𝐾 + 50 𝐾 = 2373 𝐾. This value of heating 

temperature is the temperature used experimentally to 

heat the crucible [21]. 

 

        The displayed Fig.14 shows the maximum of 

magnitude of temperature fluctuations in the P4 position 

as a function of Rayleigh number. 
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Figure 14. Magnitude of the temperature fluctuations as a 

function of the Rayleigh number for sapphire material. 

 

        We notice that the maximum of the fluctuations 

increases with the increase of Rayleigh number up to the 

value 4E5. For Rayleigh number = 5E5 It is noted that the 

magnitude has a minimum value and then come back to 

grow again as shown in the figure above. This result 

confirms our interpretation of the fig.13. 

 

 

4.2 Steady state heat transfer in the crucible 

 

        Fig.15 shows the isotherms and the heat transfer in 

the Cz crucible of the steady state. In this part we touch on 

problem of free convection.  

 

         According to the figure below, we notice that the 

contour of the temperature indicates a cold jet (blue color) 

descending from the liquid-solid interface through the axis 

of symmetry of the crucible. We also notice that at the top 

of the crucible there is an inclination of the isotherms near 

the crucible lateral wall (green color). In this case the 

calculated temperature in the crucible is between 2324 K 

(near the sapphire melting temperature) and 2365 K near 

the crucible lateral wall as shown in the temperature 

isotherms. This inclination of the isotherms indicates the 

presence of the Marangoni convection induced by the 

gradients of surface tensions. 

        The shape of the melt-crystal interface is not flat as 

shown by the first isotherm in the figure above, although 

the symmetry of the heat transfer that translates the 

symmetry of the flow in crucible. 

        The melt-crystal interface shape is very important 

since it shows that drawing conditions are very stable; when 

it is flat we obtain a good quality of the pulled crystal. The 

convex or concave shape of melt –crystal interface is 

mainly induced by natural convection and temperature 

fluctuations. 
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Figure 15. Isotherms and heat transfer contour in the 

steady state for the sapphire material 𝑅𝑎 = 5 × 105 

 

        

4.3 Forced convection 

 

       The solution that has taken experimentally is to 

introduce an opposite force to the force of free convection 

in the opposite direction. This procedure is done either by 

the rotation of the crystal, or by the rotation of the fluid 

which is inside the crucible. In our simulation we show the 

effect of forced convection by introducing the rotation of 

crystal. To show that the forced convection (crystal speed 

rotation) decreases the temperature fluctuations just below 

the liquid-solid interface, we see the difference between 

the two (Free and forced convection).  

        According to this figure we notice that the magnitude 

of the temperature fluctuations in the case of free 

convection (0 rpm) is higher than the fluctuations in the 

case of forced convection (8 rpm: round per minute).  

       We conclude that the rotation of the crystal decrease 

the temperature fluctuations which gives us a good quality 
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Figure 16. Fast Fourier transforms of the temperature 

fluctuations at P4 for free and forced convection. 

 

of the drawn crystal. This rotation decreases the 

fluctuations which gives us a good quality of the crystal 

drawn on the other side the rotating of crystal composes a 

cylindrical shape which will be used in different 

applications. 

5. Conclusion 

We have performed a three-dimensional numerical 

investigation in order to study the effect of Rayleigh 

number on the natural convection in the Cz crucible and 

on the thermal instabilities.  The heat transfer, melt natural 

convection, temperature fluctuations, radiative heat 

transfer and Marangoni convection, were conducted for 

Al2O3 melt.  We used the Fast Fourier Transform method 

for study the temperature fluctuations just below the melt-

crystal interface. Our objective is to reduce the fluctuations 

of temperature near the interface by taking into account 

the case of non-rotating seed. This study shows that 

The unsteady state flow in the Czochralski crucible 

remains axisymmetric to the first growth time up to the 

steady state. It is due to the homogeneous horizontal and 

vertical temperature gradient.  

The heating of the crucible walls up about to 2423 K 

(Ra = 10
6

) does not change the symmetry of flow in the 

crucible but it augments the temperature fluctuations and 

creates large cells of the marangoni convection which 

depends directly on the gradient of the temperature. 

The melt –crystal interface shape is mainly induced by 

natural convection and temperature fluctuations in the 

Czochralski process. 

In the absence of crystal rotation, the flow attains a 

steady state even for higher value for Rayleigh numbers but 

in this case the instabilities of temperature increase in the 

Czochralski system.  

As the Rayleigh number increases, multiple frequency 

oscillations with varying amplitudes are observed.  
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The maximum of magnitude of temperature 

fluctuations increases with the increasing of the Ra number 

except the value that has a minimum frequency. This 

lower magnitude temperature corresponds to the heating 

temperature of crucible used experimentally.  

The melt natural convection cannot be eliminated and 

is strongly influenced by temperature distribution along the 

crucible wall. 

To obtain a high quality sapphire single crystal, the melt 

natural convection must be controlled in the crucible by 

introduce the forced convection (due to the crystal and 

crucible rotation and electromagnetically induced 

convection if the electromagnetic field).   
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