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Abstract 

This calculation is part of numeric thermo-mechanical strains simulation in anisotropic solids. The objective is to apply 

Fourier’s law for anisotropic materials in tridimensional case. The study domain is a cube with unit dimension, representing 

some crystalline systems having one internal heat source equal to 10
3

 Kw/m
3

 and convective borders with a convection 

coefficient equal to 20 w/m
2

.K. Domain and heat transfer equation are discretized by finite elements method, obtained 

equations set is resolved via Crout's method. Each crystalline system is identified by its heat conductivity tensor. Obtained 

results agree well with thermal transfer theory and clearly illustrate crystalline structure symmetry. This calculation can 

predict eventual thermal strains in a solid anisotropic. 
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1. Introduction 

    The work consists on enlarging temperature fields 

calculation in anisotropic solids, already completed for the 

two-dimensional case [1]. This paper aims to implement a 

program for numerical temperature field calculation in an 

anisotropic solid into tridimensional case. To achieve this, 

we have chosen a cubic domain submitted to a volumical 

heat source effect and convective heat exchange in the 

borders. Via Galerkin's discretization method, we obtain 

an elementary-four order linear equations system, and 

then we assemble all element effects to obtain the global 

system which will be resolved via LU decomposition 

technique of Crout’s method. 

2. Fourier’s law for an anisotropic solid 

 

In anisotropic solids, heating flow vector projections 

according to space coordinates are temperature gradients 

function under same coordinates [2]: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Where 

  
qx, qy, qz: Heat flow thru x,y,z axis (w/m

2

). 

 kij : Thermal conductivity tensor (w/m K). 
 
θ: Temperature (K). 
 
In a condensed form, the energy balance equation into an 

anisotropic solid is written as [3], [4]: 
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Where 
 
w: Internal heat source in domain D (w/m

3

). 

 ρ: Density (kg/m
3

). 
 
cp: Specific-massic heat capacity (J/kg K). 

 t: Time (s). 

 

 

3. Heat conductivity tensors [kij] for different solids 

 
For each system and taking into account symmetry in 

crystalline systems, thermal conductivity tensors became 

[7]: 

 
Monoclinic system: 
 
 
 
 
 
 

Cubic system: 
 
 
 
 
 
 

Orthorhombic system: 
 
 
 
 

 

 

Trigonal system: 
 
 
 
 

 

Triclinic system: 

 

 

 

 

 

 

4. Finite elements method application to calculate 

temperatures 

 
 
4.1 Domain discretization 

 

To manage automatic mesh of studied domain on fig.1, 

we proceed with a first clipping on elementary cubes noted 

(e) of eight nodes (i,j,k,l,m,r,p,q) as shown on fig.2. Then, 

we discretized every cube (e) on five tetrahedron noted 

(ee), each of four node (i,j,k,l) fig.3. 
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                     Figure 1. Study domain 
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Figure 2. Elementary cube (e) 
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Figure 3. Elementary tetrahedron (ee) 

 

  

4.2 Equation discretization 

 

For stationary case, equation (2) became: 
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The equation (3) is discretized by Galerkin’s method, [5], 

[6]. 

 
 
 
 
 
 
 

 

 

Where 

   
Φj: State variable. 

 
ℒU=f: Problem’s state equation. 

 

U= : Approached problem solution. 

 

Cj: Constants to be calculated. 

 

 

4.3 Interpolating function choice 

 

We choose the following interpolating function [4] 
 
 
 

 

: Constants to be determined. 

 

Interpolating function in a four nodes tetrahedron 

component is : 

 
 
 
 

 

Where:  1,  2,  3 and  4 are temperatures at i, j, k and 

l nodes. 

 

We apply Galerkin’s method described in (4), then: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Using Green’s theorem we integer the first term of (7) we 

obtain: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Let 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The term I ∑

e

 exists only for elements with segments 

situated on frontiers exchanging heat with external 

medium, with a convection coefficient h. This term is 

estimated as follows: 
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= 
 
 
 
 
 

 

i=1, 2, 3, 4 

 
 
where 

e

 is the four surface areas sum of a tetrahedron. 

Second term equation integral is given by 

 

 
 
 

 

Once every calculation made, discretization from (3) for 

one tetrahedron element (ee) of i, j, k and l nodes, may be 

written in a matrix form: 

 

 
a) 

 

when no face exchanges heat with external medium, 
 

 

 

b)  =  
 

when one, two or three surfaces are within solid boundary.  
 

[K]
e

, [Kh]
e

: Square matrix of four order. 

 {W} 
e

, {θ}
e

: Column vectors of four order. 

 

 

5. Suitable mesh choice 

 

Once mathematical formula finished, which describes 

solid thermal behavior given by Fourier’s law, and 

following model discretization finite elements method; we 

proceeded to numerical calculation concerning several 

solid types. To achieve these calculations, we performed a 

program in FORTRAN language. We choose a cubical 

solid with unit dimension, which experienced temperature 

variations through volume heat source of 10
3

 Kw/m
3

. 

Before temperature field distribution is described, we 

made a preliminary estimation to choose finite element 

mesh. First, we started with an uniform grid of six (6) 

order along three axis. While temperatures are calculated 

by increasing mesh order, we noted temperature field 

variation which decreases more and more, we consider 

that it will be appropriate to further increase the mesh to a 

grid of nine (9) order, that we maintained for any 

subsequent solid type calculations. 
 
 

 

6. Temperature field calculation results for different 

solids 

 
To illustrate calculation results, we have chosen as 

numerical value for conductivity tensors 

 

 

Monoclinic system: 

 

   

 

 

 

Cubic system: 

 

 

 

 

Orthorhombic system 

 

 

 

 

Trigonal system: 

 
 

Triclinic system: 

 

 
 
7. Discussion 

 

Temperature distribution in the (x, y, z) coordinates is 

shown in Fig.4 to 8 with Tecplot software, representing 

solids: monoclinic, cubic, orthorhombic, trigonal and 

triclinic, respectively. 

 
 

For all presented cases, we find that maximum 

calculated temperature is at field centre, it is equal to 

1200°K, 1160°K, 1120°K, 1140°K and 1250°K for 

monoclinic, cubic, orthorhombic, trigonal and triclinic 

solid cases, respectively. 
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All figures present symmetries to median and 

diagonal planes as per thermal conductivity tensor 

symmetry and imposed boundary conditions. 
 

 

The results that seems qualitatively identical in bi-

dimensional case for cubic/trigonal and 

monoclinic/triclinic solids, on the fact that k11= k22 and 

k12= 0; however, in the three-dimensional case, they are 

clearly different because k33 ≠ k11 and k33 ≠ k22, and also 

k12, k13 and k23 are different from 0. 

 

I n  fig.5, temperature distribution is obviously 
different from the two previous cases because k11 = k22= 
k33, also k12, k13 and k23 are non-zero; the difference 
between the results shown in fig.4 and fig.8 is well visible 
because k13  and k23  are non-zero, which was expected 
in  results discussion  of the bi-dimensional case. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Monoclinic solid 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Cubic solid 

 
Figure 6. Orthorombic solid 

 

Figure 7. Trigonal solid 

 

Figure 8. Triclinic solid 
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8. Conclusion 

Elaborated program enabled us to identify Fourier’s 

law implementation to calculate temperature distribution 

within anisotropic solids in tridimensional case. 

 

Results agreed with heat conduction theory and 

crystalline systems symmetry. These results can contribute 

to calculate thermal elastic strains of anisotropic solids in 

tridimensional case which will be used as data for  

subsequent thermo-mechanical strain calculations in 

anisotropic solids. 
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