Journal of New Technology and Materials
JNTM
Vol. 01, N°00 (2011)33-38

OLEB Univ. Publish. Co.

Reflexion/ Transmission of a plane wave on a plane interface

F. Rahmi’, H. Aklouche’, N. Bedrici-Frai™, Ph. Gatignol’, C. Potel
" Laboratorre Dynamique Des Moteurs et Vibroacoustique, Université M. B. de Boumerdés 35 000, Algérie.
" Laboratoire Roberval, UMR CNRS 0253, Université de Technologie de Comprégne, BP 20529, 60205 Compiégne
edex, France.
“ESTACA, BP 76121, 53061 LAVAL Cedex 9, France.
" LAUM, UMR CNRS 6613, Université du Maine, 72 085 LE MANS Cedex 9, France.
* Corresponding author : Tel : +213 774 65 75 44 Fax : + 213 24 91 30 99; Email : rahmifahim@gmail.com
Received: 25 May 2011, accepted: 30 September 2011

Abstract
On a plane mterface between two elastic half-space, P and SV waves propagating m the (X’ Z) pare related by Snell’s law and

the law of continuity of displacement components Uy and Uz and constraints Oz and O on both sides of the interface. An
mcident wave P or wave SV generates two P or SV reflected waves and two transmitted waves P or SV. The four continuity
equations are written i the form of a matrix multiplied by a vector transmission-reflection coeflicient, defined for potential
movement of the particles. For an planar boundary between fluids with different characteristic impedances, there is continuity of’

u O

2 and Oz on both sides of the interface and the shear @ in the medium must vanish at the interface (fluid media involving

O,

only perfect no viscosity, so that was normal stresses, not shear stress ©xz = 0 ). As soon as the angle of mcidence exceeds a

o
critical value of incidence, the wave for which the value of mcidence is greater than 30 pecomes evanescent. The reflection-

transmission coefficients become complex.
Keywords : P waves, incidence, reflection, transmission.

1. Introduction

The non destructive characterization of structures has
grown considerably in recent years. The ultrasonic methods
have become the preferred tool for non destructive
evaluation of mechanical properties of materials [1]. They
also have the advantage of being applicable to a wide range
of materials. Surface waves were a long time the subject of
extensive studies which had applications in both non-
destructive tests in signal processing [1, 2]. Much research
has been conducted on the interaction of such waves with
surface discontinuities but most on the reflection and
transmission. The elastic waves that result from moving
particles propagate only in material media, so that
electromagnetic waves propagate in a vacuum also. It was
possible to address immediately the propagation of elastic
waves In a fluid because this medium 1s a set of free
particles; their properties are expressed using scalar

parameters: density Py coefficient of compressibility e
mean free path (average distance traveled by a particle
between two collisions). The propagating waves are fully
described by a scalar, pressure, or potential expansion of
the displacement or velocity [1, 2, 3].

In summary, in a perfect fluid :

- The polarization of the wave, that is to say, the particle
motion 1s necessarily longitudinal, parallel to its wave vector,
the absence of viscosity preventing any shearing motion;

- The speed of propagation 1is expressed by

c=Y\pz;

- The Poynting vector indicating the direction of energy
propagation is parallel to the wave vector;

- The polarization of reflected and transmitted waves, on
both sides of a surface separate two media of different
mmpedances, and that of the incident wave. Their
amplitudes and propagation directions are given by the
Snell-Descartes in which only are involved the impedances
of the media and the angle of the incident wave.

- The wave continues to propagate when the distance
between a maximum and minimum pressure becomes the
order of magnitude of the mean free path of particles.

2. Reflection / transmission at a plane interface
Consider the interface between two homogeneous fluids

of different velocities (Cl and Cz)’ when changing
propagation environment, changing the characteristics of a
plane wave 1s particularly interesting. The change in speed
causes a specular reflection of the wave in the first medium
(in a direction symmetrical to the normal at the point of
incidence) and a refraction of the wave in the second
medium at an angle given by famous law of Snell.

A progressive plane wave acoustic pressure ﬁa which 1s of
the form ]?1 (t - ﬁa' F/ Cl) » maintained by a source located
at infinity (for z tends to —0), propagates in a half-space
fluid (density A1 and speed Cl)’ bounded by a planar
interface located at £ = 0, separating it from another half-

space P velocity of Cz) (Figure 1).
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Figure 1. Reflection / transmission at the interface between
fluids with different characteristic impedances.

The axes are chosen so that the direction of propagation of

Oxz)

the mcident wave is located i the plane ( v and 1t

makes an angle 91 with the axis (OZ) (obliqualy incident).
The mteraction of the oblique incident plane wave with the
mterface generates a reflected wave mn the middle F1

amplitude Bl (and direction of propagation making an

/
angle 01 with the axis (OZ) ), and a wave transmitted in the
middle F2 amplitude Az (and direction of propagation

’
making an angle 92 with the axis (OZ ))
2. 1. Whriting the problem in the middle F1

The propagation equation in the fluid medium 1s
written F1

F
&%+55

Conditions at the boundary (interface F1 / F2) z=0
(equal sound pressures normal and peculiar velocities in
cach medium) are written as follows:

1

2 at2jP(x z;t)=0,vx,Vz<O Wt )

(X z;t)=p, (X, zt), Vx,2=0,Vt 9-2)
V,(x,z;t).i =V, (x,z;t) ., ¥X,z2=0,Vt (oy

Where n 1s the normal to the interface (here n= éz )

The projection on the normal N of Eulers equation
outside sources in the medium F1 1s written:

PRy pud - 3

1 ' - ¢

ot on

Because the projection operators on scalar N and a/ ot
commute,

34

o(v.) o
+ L=0 (4-a)
P15 on
Similarly, in the middle F2,
o(v,.n 5
P, (721) , op, _g (1)

ot on

By using equations (4), the boundary condition (2-b) can be
written, equivalently

1ap,, ..y 10p,

——=(x,zt X,z;t), vx,z=0,vt ..
pl an ( ) pz an ( ) (J-d)
Or

i%(x,z;t) 1% —Z(xzt), VX,2=0,Vt (5

py 02 p, 01

The reflected wave propagates to infinity (note that this is
not a condition of Sommerfeld for the existing field at
ifinity).

2. 2. Whiting the problem in the middle F2

The propagation equation in the fluid medium 1s
written as F2

%+§ iz(‘;; B(xzt)=0 ¥ VZ<0 %t
G

The boundary conditions at the interface Z= 0 are
1dentical to those written n §. 2. 1.
The medium F2 containing neither source nor border other

than at Z= 0, write a condition of no return.

3. Solutions of the problem

The pressure field ﬁl in the middle F1 is the sum of the

pressure field incident Pa and Po reflected pressure field
can be written as follows

Bzt =R (xz+R(xz)=F t% +g|t rgr

@)

And the field F2 is written in the middle

_ ~ n I
p,(x,z;t)=f,| t——2—
CZ
8)
Where Nar My and N, denote the conditions of wave

propagation incident, reflected and transmitted and T

denotes the position vector OM = Xéx + Zéz-

The condition (2-a) equal pressures Pr and P2 at the
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z

mterface =0, whatever are the values of variables.

Following the functions fl, 0, and fz which are 1dentical,
and their arguments :

n.r n.r n,.r
t_ a :t_ b :t— 2 ,VX,Z=O,V'[ (9-'1)
C C C v
1 1 2
Or, noting Nyar Ny and N the respective components
on the axis (OX) vectors Mar My and n,,
n.x n,X n,X
Xa_ — X = X2 ,VX, = O, Vt (g_b)
C, C C, )
This implies
Na _ N _Ne
cC ¢ ¢ ©-)
By expressing the components Nyas Ny and Ny,

1A
according to angles 91'91 and 92’ equations (9-c) are

written
sing, _sing _siné,
C, o c, (10)

!
As a result, since 91 and 61 are between 0 and 7[/ 2,

6 =6 (11

They are reflecting equal angles of incidence and reflection.
It should be noted firstly that the establishment of Snell's
laws do not require the assumption of monochromatic
wave, and secondly it 1s the conservation of the projection
vector propagation directions on interface that involves laws
of Snell, and not vice versa.

3. 1. Slowness surface

Slowness surface (L) is the location of the ends of the

m= % led to a fixed point O. Since M and C

vector

are collinear and mC =1, , surface area and slow speeds to
match in reverse pole O and power 1. Slowness surface,
analogous to the surface of optical indices, plays an
important role in the problems of reflection and refraction.
The slow surface of a material own supplies for any
direction, the solutions of the wave equation. Accordingly,
since the vector of the incident wave is known, simply add
the Snell's law to the surfaces of delays for the two materials
without calculation, the vectors of the could
propagate in the one another, their polarization and
acoustic rays (that is to say, the direction of energy
propagation).

In fluid medium, the speed is the same for any direction of
propagation, the slow surface 1s a sphere and its intersection

Oxz)

waves

with the plane of incidence ( here 1s a circle.

Case G <G, -
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Figure 2. Slowness surface case C, <C,.
Noting that each term of equation (10) corresponds to the
projection on the xaxis vector slowness of the incident
reflected and transmitted waves, using the intersection with
the plane of incidence, surface delays of each of semi-
mfinite F1 and F2, can view, graphically some properties of
waves propagating in each medium. It suffices to draw a line

parallel to the axis Oz corresponding to the angle of

siné,
mcidence for 6’1 on the axis Ox, the amount %

(Figure 3. Where € <G 50 %1 > %2) Delaying this

amount to the right provides an intersection with each curve
of slow circles F1 and F2 and consequently, yields the
angles of reflection and transmission.

Sfuid 1

fuid 2

sinfl,
€ I : [ [
€y

W E

Figure 3. Using the intersection with the plane of incidence
of the slowness surface of each semi-infinite medium [3].

3. 2. Harmonic solution

The source to infinity is monochromatic pulsation =
a vector wave number associated with each plane wave

pressure ﬁzﬂ r)b and ﬁz can be defined,

Are

— _ w _,

ka == klna - _na (12_21)
C,

— N a) .

kb = klnb =—n, (12-b)
G,

— . a _,

kz = kznz =—1h (12-¢)
C,
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And the use of a solution can be written

(ﬁi (x,z;t) = A exp{—i(IZi.O—M—a)t)} )
P.(x,z;t)= Alexp{—i(lza.O—M—a)t)}
P, (x,z;t)=B, exp{—i(lzb.O—IVT—a)t)}

(

And
—at )} (13-0)

B, (x,z;t)= A, exp{—i k,.OM
According to equations (9-c) written in paragraph (§ 3) that

come from writing the boundary conditions at the interface

(13-a)

(13-b)

z=0, written for all values of x and ¢ the projections on

the interface (OX) vector wave number kaa kb and k2
are equal :

kxa = kxb =kx2 :kx (14‘)
The laws of Snell (10) and equal angles of incidence and
reflection (11) who sell require, in the FI environment,

equality (at sign) projections on the axis (OZ) vector wave

number ka and kba :

kza =- kzb = kzl (15)

In summary we write :

ka = kxé'x + zléz (16-21)
kb = kxéx - kzléz (16-b)
k2 = kxéx + kzzéz (16-¢)
And

OM = x€, + Z€, (16-d)

The formula for the pressure field in the middle F1

Rzt =R(%zt)+ 0 (% zt) =Ag o) g lorer
(17)
And that F2 is in the middle

r)z (X, Z,t) — Aze*i(kxmkzzz,wt)

Equality of pressures (2-a) z=0 leads to

A2e kX a)t

Aie—i(kxx—a)t) n éle i(kyx—aot)

Hence
(19-a)

(19-b)
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(20-a)

R,=B,/A
T,=A/A

Are the coeflicients
pressure

(20-b)

of reflecion and transmission of

amplitude.

z

The partial derivatives with respect to & pressures can be

written

Z—AF;(X 7 '[) l{_'&le—ikzlz n éleikuz}e—i(kxx—wt)
(21-a)
And

8 —i Z X—
apzz(x z;t) = —ik,, Ae e (e (21-b)

Their report in the condition (4-b) equality normal speeds

(b) L= 0 leads to

Ikzl _ o) i(kyx—ot)
SHAB)e

k N ~—i(k X—at
= Mo p giteae) vy 720wt
P>

Or

kz A LR 22 A
“L(-A+B)=——2A,
P P
(22-a)
Hence

knpg Ko _ka
y2i P P> P y2i

(22-b)

Solving the system of two equations (19) and (22) with two

R and T

unknowns p leads to

R — _kzz/pz + kzl/pl

- 23-
P kzz/pz + kzl/pl (282
And
T = 2k, /Py ©3h)
P kzz/p2+kzl/pl o

k,, and k,, 1,
6.k, and 6,

By replacing their respective expressions

In terms of kl’

k,,=k, cos 6,

(24-a)

And

kzz :kz Cos ‘92 (24-b)
And introducing the characteristic impedances Zl and Zz
of the two media F1 and F2

Z,=pC (25-a)
And

Z,=p,C, (25-b)
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The coeflicients of reflection and transmission (23) can be
written

A - —-c0s6,/Z,+cos6,/Z,

P cos6,/Z,+cosb,/Z, (26-2)
And
T - 2¢0s6,/Z, _
 c0s8,/Z,+cos6,/Z, (26-b)
Or

A - Z,/cos6,—2,/cosb,
P Z,/cos8,+Z,/cosb,
And
F o 2Z,/cos 6,
P Z,/cos@,+Z,/cos0,

(27-a)

(27-b)

Examples of changes in coefficients of reflection and
transmission of pressure amplitude, depending on the angle
of incidence are presented in the figures below.
For an angle of incidence equal to 30° [1, 2, 3], a
“rupture” appears in these curves. This angle 1s the critical
angle for the interface considered above which the
transmitted waves are evanescent.

3. 3. Evanescent waves

In the case where C>C and 91 > Hc' the
transmitted wave becomes evanescent its amplitude
decreases exponentially with a distance from the interface
[1, 2, 3]. The total reflection phase shift accompanied X by
a reflection given by the argument of the complex reflection
coefficient. The sum of the incident wave and the reflected
wave produces a standing wave totally vertically and
horizontally progressive.

4. Numerical results
Example 1 :

4,=2000 Kg/n?,c, =750 nys, p, =2500 Kg/nt,c,=1500 ny’s

reflexionAranstission Coef

O thetac

Phase (Degre)

o | H | H H H H '
0 20 40 60 60 0 20 40 [=i1] 60
Incident  angle (Degre) Incident  angle (Degre)

Figure 4. Magnitude and phase of the reflection and
transmission coefticient for Example 1

Example 2 :
=300 Kg/n?,¢, =750 ny's, o, =1000 Kg/nT,c, =1500 ny's
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reflexionfransmission Coef

Modul
Phase (Degre)

u} 20 40 =] =] i} 20 40 B0 a0
Incident  angle (Degre) Incident angle (Degre)

Figure 5. Magnitude and phase of the reflection and
transmission coefficient for Example 2

Example 3 :

A =1000 Kg/nt,G =750 1’s, o, =1000 Kgy/nr?, ¢, =1500 s

reflexionftransmission Coef
18 1 : 1 : ! ! !

tlacul
Phase (Degre)

04

O T w  m I TR R
Incident angle (Degre) Incident  angle (Degre)
Figure 6. Magnitude and phase of the reflection and
transmission coefficient for Example 3.
With :
I Reflection coefficient;
7: Transmission coefficient;
Using the construction of Figure 3, it appears that from a

6,

certain angle of incidence noted Yc and called critical angle

for the interface F1/F2 considered (where G < Cz) [1, 2,

3], there 1s no longer intersects the line parallel to Oz with
the slow curve of the medium (Figure 7-a). Corresponding
waves in the middle F2 are no longer propagating and
become evanescent: they see their energy propagating in
parallel to the interface whereas the pressure amplitude

decreases exponentially in the direction of £ increasing.

The value of the critical o

c 18
6, = arcsin (y .
C2

This corresponds to

angle given by

O ="y,

When & > €21 construction of Figure 7-c. shows that there
1s no critical angle on the interface considered.
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Figure 7. Intersection with the plane of incidence of the

slowness surface for an interface F1/F2 -a) C, <G, -b)

C, <Gy, -0) G, >C, [3].

4. 1. Discussion of results

In the i1deal case where the interface is considered
perfectly flat, while the second medium has characteristics

different from those acoustic (pl’cl) and (pzvcz)’ a
portion of the energy of the incadent wave will be
transmitted in the second medium. The consequence 1s that
the reflected wave will be assigned a reflection coefficient of
modulus less than or equal to 1 [1, 2, 3, 4, 5, 6]. If the
reflecting medium has a velocity greater than that of the F1
community, we have seen that there exists a critical angle

0

¢ at which transmission 1s impossible, the modulus of the
reflection coefficient is then equal to 1 [1, 2, 3, 4, 5, 6] (the
phenomenon of total reflection). At the critical angle the
reflection coefficient decreases sharply with the angle, and
when close to vertical it depends only on the characteristic
mmpedances of two media. In the presence of damping in
the second medium the phenomena will be slightly
modified; in particular the coefficient of total reflection will
be slightly less than 1. Finally, if the reflecting medium is
mmpedance is very small or very large compared to that of
the F1 community, the incident wave will reflect almost no
energy loss, the reflection coefficient (the ratio of the
amplitudes of waves reflected and incident) will equal 1

38

regardless of the angle [1, 2, 3].
The reflection coefficient of transmission of the pressure in
the second medium, affecting the amplitude of the refracted

wave 1s given by T=1+R. The pressure level of the
transmitted wave can exceed that of the mcident wave. This
result simply reflects greater continuity of pressure on both
sides of the interface, and in no way violates the law of
conservation of energy and can easily show that the mntensity
1s equal to the sum reflected and transmitted intensities.

5. Conclusion

When the speeds of wave propagation in C. and &

circles F1 and F2 are such that & <C

0

mcidence 91 rated Yc called critical angle for this interface
from which the transmitted wave in the middle F2 becomes
evanescent. The reflectance in the middle F1 becomes
equal to 1 module (total reflection), but there is always the
presence of acoustic energy in the medium F2. The
evanescent transmitted wave propagates parallel to the
mterface, while its amplitude decreases exponentially with
depth (when zincreases), perpendicular to the interface.

21 there 1s an angle of
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