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Abstract   

On a plane interface between two elastic half-space, P and SV waves propagating in the ( ),x z   pare related by Snell's law and 

the law of continuity of displacement components  xu  and zu   and constraints zzσ  and zxσ  on both sides of the interface. An 
incident wave P or wave SV generates two P or SV reflected waves and two transmitted waves P or SV. The four continuity 
equations are written in the form of a matrix multiplied by a vector transmission-reflection coefficient, defined for potential 
movement of the particles. For an planar boundary between fluids with different characteristic impedances, there is continuity of 

zu  and zzσ  on both sides of the interface and the shear zxσ  in the medium must vanish at the interface (fluid media involving 

only perfect no viscosity, so that was normal stresses, not shear stress 0xzσ = ). As soon as the angle of incidence exceeds a 

critical value of incidence, the wave for which the value of incidence is greater than 30°
 becomes evanescent. The reflection-

transmission coefficients become complex.  
Keywords : P waves, incidence, reflection, transmission.  
   1. Introduction 
     The non destructive characterization of structures has 
grown considerably in recent years. The ultrasonic methods 
have become the preferred tool for non destructive 
evaluation of mechanical properties of materials [1]. They 
also have the advantage of being applicable to a wide range 
of materials. Surface waves were a long time the subject of 
extensive studies which had applications in both non-
destructive tests in signal processing [1, 2]. Much research 
has been conducted on the interaction of such waves with 
surface discontinuities but most on the reflection and 
transmission. The elastic waves that result from moving 
particles propagate only in material media, so that 
electromagnetic waves propagate in a vacuum also. It was 
possible to address immediately the propagation of elastic 
waves in a fluid because this medium is a set of free 
particles; their properties are expressed using scalar 

parameters: density ,ρ  coefficient of compressibility ,χ  
mean free path (average distance traveled by a particle 
between two collisions). The propagating waves are fully 
described by a scalar, pressure, or potential expansion of 
the displacement or velocity [1, 2, 3].  
In summary, in a perfect fluid :  
       - The polarization of the wave, that is to say, the particle 
motion is necessarily longitudinal, parallel to its wave vector, 
the absence of viscosity preventing any shearing motion;  
       - The speed of propagation is expressed by 

1 ;c ρχ=   
       - The Poynting vector indicating the direction of energy 
propagation is parallel to the wave vector;  
 

- The polarization of reflected and transmitted waves, on 
both sides of a surface separate two media of different 
impedances, and that of the incident wave. Their 
amplitudes and propagation directions are given by the 
Snell-Descartes in which only are involved the impedances 
of the media and the angle of the incident wave.  
- The wave continues to propagate when the distance 
between a maximum and minimum pressure becomes the 
order of magnitude of the mean free path of particles. 

 
2. Reflection / transmission at a plane interface  
    Consider the interface between two homogeneous fluids 

of different velocities ( 1c  and )2 ;c  when changing 
propagation environment, changing the characteristics of a 
plane wave is particularly interesting. The change in speed 
causes a specular reflection of the wave in the first medium 
(in a direction symmetrical to the normal at the point of 
incidence) and a refraction of the wave in the second 
medium at an angle given by famous law of Snell. 

A progressive plane wave acoustic pressure ap)  which is of 

the form ( )1 1. ,af t n r c−
) r r

 maintained by a source located 

at infinity (for z tends to ),−∞  propagates in a half-space 

fluid (density 1ρ  and speed 1),c  bounded by a planar 

interface located at 0,z =  separating it from another half-

space 2ρ  velocity of 2 )c  (Figure 1).  
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And introducing the characteristic impedances 1 2 Z and Z  
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2 2 2=Z cρ                                                                     (25-b) 
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