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esented to schedule, in a two-machine flow shop

Abstract: In this paper, a linear algorithm is pr
environment n unit execution time (UET) jobs, related by an intree precedence constraints, so as 0

minimize simultaneously the overall completion time and the mean completion time.
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Résumé: Dange cet article, un algorithme de complexité linéaire est présenté pour ordonnancer, dans
un’errmmnncment de type flow shop, sur deux machines n jobs unitaires reliés par des gontrainws d¢
précédence de type arborescence entrante, pour minimiser simuitanément les deux critéres que sont la
durée totale et le temps moyen d’achévement d’un ordonnancement.
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1. INTRODUCTION
The usual flow shop problem can be described as follows.

Given are a set of n jobs and a set of m machines. Each machine can handle
at most one job at a time and each job can be processed by at most one machine
at a time. Fach job consists of m tasks indexed by 1,...,m and the i-th task of a
job precedes its (i 4+ 1)-th task for ¢ = 1,...,m — 1. Further, the i-th task of the
J-th job has to be carried out on the -th machine, during an uninterrupted period of
time, /;;. The purpose is to find a schedule of all the jobs which minimizes the overall
completion time (also called the Makespan) and the mean finish time.

When there is no precedence constraint on the set of jobs, flow shop scheduling
with respect to the Makespan is shown to be A’P-complete in the strong sense [3], even
for the case m = 3. However, for the special case m = 2, there exists a polynomial
time algorithm [2]. Concerning the mean finish time, the corresponding problem is
N'P-hard even for the case m = 2 and preemption is allowed [5].

On the other hand, when precedence constraints on the jobs are considered, we
usually distinguish between two types of dependency: a job 7 precedes job j means
that the latter job can only start processing its first task just after the first task the
former job has been completed; whereas, in the second type, the first task of job j
can only start its first task after the last task of job 4 has been completed.

As far as the complexity aspects are concerned, in the first type of precedence
constraints, the corresponding two-machine flow shop problem, with respect to the
Makespan, is solvable in O(nlogn) even for a series-parallel precedence graph [7],
but becomes again N'P-hard for general precedence constraints [6]. In the second
form of the precedence constraints, the corresponding two-machine flow shop problem
becomes AP-hard even for a tree like precedence graph [3].

In this paper, we consider the case in which the jobs are related by a tree (more pre-
cisely an intree, see the definition given below) precedence of the second type and the
execution times are restricted to unity. Following the Graham’s notation, these two

problems are denoted respectively by F'|UET, intree|Cmex and FIUET, intree| > C;
i=1

In [4], it was reported that Lageweg solved polynomially the F2|UET, tree|Cpay
problem and the F2(UET,tree] Y C; problem!. But, to the best of our knowl

i=1
edge. Lageweg's algorithms and the proof of their optimality have not appeared
yet in the literature. In this pdper, we reconsider the above two problem and
solve them simultaneously by a single algorithm® i.e., we are solving the problem

'A tree is either an intree or an outtree.
?In other words we are solving a bicriteria problem. In the multicriteria optimization terminology,
the solution achieved by our algorithm is called an ideal point.
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Theorem 7. If opt denotes the value of an optimal schedule length and m the num-

ber of machines then
opt > fga)i{m X1+ |Vi] — 1}
. =is

P l“OOf: From lemma 5, we can assume that an optimal schedule is a level
schedule. Even if the precedence constraints are disregarded, it takes at least |V;| to
complete the last processed vertex of V; on the first machine for which (m — 1) units
of timeg must be added to finish its processing on the (m — 1) remaining machines. It
then takes at least (i —1)m units of time to schedule the remaining vertices related by
the precedence constraints containing at least one chain of height (1 — 1) (see lemma
6). Consequently, we obtain

5 i — Dm+ Vi +m—
opt > max {(i—Lm+ Vi[+m—1}
- A a P i 3 er AN o L]

Eos PEERe Vo N 1”(/ e T A | {¥ael L B

Lemma 8. The mean finish time on m machines of a chain of length %, starting at
time t, is exactly i(2t + m x i + m)/2, for any given schedule.

Proof: To complete any vertex v in a chain, it takes exactly m units of times.
Furthermore, a successor of v cannot start its processing on the first machine vertex
until v has finished its processing on the m-th machine. Thus, summing all together
the completion times of the i vertices establishes the statement of the lemma. O

Theorem 9. If C; denotes the value of the completion time of job i in an optimal
mean finish time schedu]e and m the number of the machines then

}_:a > max { Vil Vil +2m — 1) + %(i — 1) (2Vi| + m(i +2) — 2) +min(A,-,Bi)}.

where

A = Hi—2)(m— 1) @Vil +mli —2);

B, = lR/(m-1)}(m—1)2Vi|+m|R/(m-1)})

- + %ﬂ?mod((m ——) 1) 2{Vi| + 2m R/ (m — 1) | + R mod (m — 1}};
L = n—1W—-(E-1).

I

i

Proof: Without loss of generality, let us assume the optimal schedule is a level
schedule. Even if the precedence constraints are disregarded, the mean finish time of

the set V; is at least
Vil4m—1

Z §= -IVI(IVi +2m —1)

J=
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The remaining m — |V;| vertices are related by a least one chain of length 7 — 1
(inclucling the root). The earliest time the first vertex of that chain (say C) can start
processing is {V;| +m — 1. Thus, from lemma 8, by letting £ to be |V;| + m — 1, the
mean finish time of C is

> C

el

[N

(=1 Qi +m—1) +m(i - 1) + m)

- %(@- ~ (23l + m(i +2) - 2)

Observe that on each machine, when scheduling a chain, there evist (m —1) time
glota between the execution of two successive vertices. Thus, for the chain C, there
are (i — 1)(m — 1) such time slots. Because of the root, only (2 — 2)(me — 1) are

schedulable time slots.

Let us first assume that R =n — |V}| — 5 + 1 < (m — 1)(¢ — 2). From the above
observation and from the fact that the earliest time . job of the R remaining vertices
can start processing is ¢ = |V;|, it follows that

[R/(m—1)] m—1
| C: > X (m—l)(t+km)+[R/(m—1)Jka
T R;od (m—1) -
+ ) (@E+mlR/(m—1)]+k)
k=1

Thus, doing all the computations yield the first bound of the lemma.

Now, if R > (m — 1)(i — 2), then it is clear that the mean finish time of the R
remaining vertices cannot be better than the mean finish time of (m—1)(i—2) vertices.
Thus, doing the same computations as above by replacing R by (m — 1)(i — 2), and
observing that in this case R mod (m — 1) = 0, we obtain

2., Gz i(m—l)(t-}—(k—-—l)m) +(E—2) x mfk
Jje€I—V;—C k=1 k=1

-

Thue, again doing all the necessary computations yield the other bound of the lemma.

The statement of the lemma is established by taking the minimum over the two
bounds and the maximum over the h different V;. O
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Example 10. Let us consider the tree of figure 1. The different V; which can be
obtained are:

Vi={1,2,...,13} Va={1,2,...,12} Vz={1,2,...,10}
Vi={1,2,...,9} Vei={12...,7% Ve={1,2,....4}.

With regard to the finish time, the lower bound obtained on two machines is

opt 3 aef® £ 18— 144 18— 16-410~1, 1047~ 1,18 4+4=1]
=16

Similarly for the mean finish time on two machines, we obtain

S " C; > max{104,90 + 15,65 + 12 4 28,54 + 42 + 11,35 + 52 + 20, 14 + 55 + 36}
7 |

= 107

3. AN ALGORITHM FOR THE TWO-MACHINE CASE
In this section, we present a polynomial algorithm to solve the above problem for the
case of two machines.

The idea of our algorithm, which is almost the same as Hu's algorithm (see for
example [1] for its description) which solves the same problem but on m identical
machines, is to schedule the vertices level by level, starting from the highest level
giving the priority to the vertices without predecessors in that level. This procedure
is kept as long as long the number of the vertices in a level is strictly greater than
one. When the level of a tree is reduced to a single vertex, the highest vertex without
a. predecessor is then scheduled before or after the vertex of the considered level,
depending on wether the last processed vertex is the successor of the single vertex of
the considered level. Formally, the algorithm is as below.
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Algorithm 1

1. set L := h; lastsched:= 0;
2. Let Sh_r1 be the set of vertices of level L;
3. while L > 1 do
begin
a. if |Sp_r41| =1 (say {z;}) then.
begin
- a.l. let y be the highest vertex such that pred(y)= 0;
a.2. if y exists then
begin
. if pred(z;) = lastsched
then Sp—z+1 = Sh-z+1 U {y}
else Sh—z+1 = {¥} U Sp—z11;
. delete y from the tree;
. lastsched:= last(Sh—1+1);
end;
end;
b. schedule the jobs in S, 11 from left to right on both machines;
c.set L:=L—1;
d. Set Sp—r41 = Whr+1 U suce(Sh—r4+2 — {y}); where W},_r ., denotes the
set of
vertices of level L without predecessors;

end;

Example 11. Let the following tree be the precedence constraints of a 13-job prob-
lem on two machines. At the successive iterations of the above algorithm, the lists S;
are generated as shown in figure 1.

The Sarlechediesmmespiss dpriieakowe aiearithon 1§ g Arsrsibed dx the Geutl

diagram b fgiie & 107.
‘Theorem 12. The running time of algorithm 1 is O(n).

Proof: The above algorithm consists: for each level L; h < I < 1, of constructing a
list Sz, searching eventually for a vertex (without a predecessor), and then scheduling
that list. It is clear that the construction and the scheduling of the list S, talzes a
time of O(|level h — L +1|). 1t is also clear that searching for the highest vertex
such that pred(z) = 0 takes a time proportional to the height of the tree, Lot this
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time be O(x) which corresponds to the complexity of step (a). Thus, the complexity
of the while-loop is

tin) = ZO|1evelh L+1]) +ZO@;€

L=1

= O(Z]levelthlel) +o(;xk)

L=1

It is clear that the sum of the cardinality of the levels is nothing else than the
number,n, of the vertices. When it comes to search for a new vertex at step (a),
this procedure starts from the level where the last search of this kind has finished. It

follows then that .
\L=1 /

Thus. the complexity of the while-loop which dominates the complexity of the above
algorithm is O(n). O

Observe that the successive lists S1,52,...8; generated by the above algorithm
correspond to the set of vertices of the same level. In case a given level is reduced to
a single vertex, the corresponding list contains another job ot a lower level, Let S¢
be the final list that selects at least two vertices from a single level h — f + 1. If no
such stage exists then Sy = Sy = 0.

3.1. Minimizing the Makespan. To prove the optimality of the above algo-
rithm, with respect to the overall completion time criterion, we will show that its
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value on the schedule generated by the above algorithm is exactly the lower bound
given in theorem 7.

Lemma 13. All the lists Sy, 95 ...,Ss schedule only vertices from the set Vp—s41.

Proof: If, at each iteration of the algorithm, the corresponding list Sy; 1 < L <
h — f + 1, contains more than two vertices of the same level then the result of the
lemma follows immediately. Suppose now that there exists a list S, that selects a
vertex y such that its level ¢t < h — f + 1. From the algorithm, level h —r + 1 is
reduced to a single vertex. Furthermore, ¢ is the highest level such that pred(y)=
at that stage in the tree. Let us distinguish two cases:

case 1 There exists a vertex p in a list Sp, 7+ 1 < b < f such that pred(p)=0:
This case cannot occur as the algorithm would select vertex p before vertex y. Con-
sequently, t > h — f + 1.

case 2 There does not exist a vertex without a predecessor up to list Sy: This
means that all vertices associated to the lists S,41,... Sy have predecessors. But, as
mentioned above, we know that level h — r + 1 is reduced to a single vertex, say z.
It then follows that vertex z has at least two successors which cannot be true in an

intree. Consequently, ¢ > A— f+ 1. O

Lemma 14. If S; exists then it takes exactly [Vy_¢;1| + 1 units of time to complete
on two machines the vertices of the lists Sy up to Sy.

Proof: It is clear that if a vertex z is completed on the first machine at time t,
then its successor can only start its processing on the first machine from time £ + 1.
To ovoid an idle time on the first machine, it suffices to schedule at time ¢ either a
vertex whose predecessor has been scheduled before vertex 2 or a vertex without a
predecessor. By definition, Sy is the last list which contains more than one vertex
from a single level. This means that the cardinality of all the preceding lists S; is
greater than two. Let us distinguish two cases:

case 1 5; contains only vertices from one single level: As the vertices of 8. are
scheduled in a FIFO manner, relatiyely to their predecessors giving the priority to
the vertices without predecessors, clearly no idle time can occur when scheduhng on
the first machine the vertices of S;.

case 2 S; contains a vertices from different levels: This case only occurs when
a given level is reduced to a single vertex, say zy, in that stage of the tree. In that
case, a vertex of a lower level and without a predecessor is scheduled either before
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zy if pred(z;) is the same as last(S;_;) or after x; otherwise. Thus, no idle time can
occur when scheduling on the first machine the vertices of S;.

Consequently, in either case, when it comes to schedule lists S;, 1 <7 < f no idle
time occurs on the first machine. The result of the lemma is thus established. O

Lemma 15. The lists S¢y1 up to Sy, contain at most (h — f — 2) vertices without
predecessors.

Proof: By definition of S, when it comes to schedule Sx; f+1 < k < h; the
corresponding level is reduced to a single vertex. From the algorithm, this single
vertex is scheduled with a vertex without a predecessor. Furthermore, when it comes
to schedule the root of the tree, contained in the list Sy, there is no vertex left to
schedule. As the highest level left when scheduling list Sy 18 (h — f), the result of
the lemma follows immediately.

Lemma 16. It takes exactly 2(h — f) units of times to schedule on both machines
the lists S¢41 up to Sh.

Proof: It is clear that the highest vertex left after scheduling Sy is at level (b — f).
Thus, from lemma 6, it takes exactly 2(h — f) units of time to schedule the longest
chain left in the tree. Because of the precedence constraints, there exists an idle
period of time generated by the schedule of the last vertex scheduled in V;_y. and
the first vertex of the longest left chain if Sy exists, followed by (h— f—1) other idle
periods generated by the longest chain of length (h — f). From lemma 13, at most
(h— f — 2) vertices without predecessors are left in the tree after the schedule of S;.
Thus, there are enough time slots to plot those vertices as they are scheduled before
each vertex of the chain of length (h — f), if Sy exists, otherwise they are scheduled
after each vertex of the chain of length h. Consequently, the lemma is established. O

Theorem 17. The above algorithm generates an optimum schedule

Proof: We know from lemma 14 that it takes |Vi,_zy1) + 1 units of time to schedule
the lists S) up to Sy, if list Sy exists. From lemma 16, it takes 2(h - f) units of time
to schedule the vertices of lists Sgyq up to Sp. Thus, to schedule the whole tree, it
takes either 2/ units of times if Sy does not exists, or [Va—s41| + 1+ 2(h — f) units
of timme otherwise which is nothing else than the lower bound given in theorem 7 for
m = 2 and ¢ = h for the first value or i = h — f + 1 for the second value. O
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3.2. Minimizing the mean finish time. In this section, we prove that the
mean finish time of the schedule generated by algorithm 1 is optimal by showing
that the lower bound given in theorem 9 is achieved. Before proceeding further,
let us rewrite the lower bound of theorem 9 for m = 2. Observe, in this case, we
have z mod (m — 1) = 0 for any integral z. Thus, we obtain the following simplified

formulae

(IVif +3) + (i — 1) (|Vi| +% + 1) + min(A;, B;) (1)

s 1
g C; > max -|V;
1<i<h 2

i=1

where

A = (-2)(Vil+i-2)
B, = (n—i+1)n—Vi]—i+1)

Lemma 18. The mean finish time of the vertices of the lists S up to Sy is exactly

1
§|Vh—f+1| (|Vh—gsr| +3)

Proof: We know from lemma 13 that lists S; up Sy schedule only the vertices
of Vi_sy1. Further those lists are scheduled without an idle time on the first ma-
chine (lemma 14). Thus, the mean finish time of the vertices of 51 up to S; is

2 Vhe 1| ([Vaepral +3). O

Lemma 19. iflist S; exists then the mean finish time of the vertices of the lists Sy
up to Sy, is exactly

>, Ci=(h=f)(Vipul+b-Ff+2)+(n=h+ f+1)(n = [Vipul|—h+f).

Proof: It follows from the definition of S that the lists Sk, f + 1 < & < %, contain
al most two vertices {z,y}: z is at level A —k + 1 and y is at a lower level than .
Thus, the vertices of type x form & chain (say C) of length (h — f). Because pred(z)
is scheduled at the last position in Sy, then first vertex = starts at time JV;_,, ) 4+ 1.
Thus, the mean finish time of C is '

\ S0 = L £) @ Vacpar) + 1)+ 20— ) +9)

1cC
= (b= )Vacrar +h— F+2). (2
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The total number of vertices of type zxg is B =n— |Va_si1| — (A — f). We know
from lemma 15 that B < h — f — 2. As each y is scheduled before each z, it follows
that the mean finish time of these vertices is

R
| Z CCi = g(lvh_f+1|+(2k—1))
= (n—h+)n—Vasul —h+f) (3)

Adding all together (2) and (3) yield the result of the lemma. O

Lemma 20. if list Sy does not exist then the mean finish time of the vertices of the
lists S¢4q up to Sy is exactly

> Ci=hh+1)+(n—-h)n—-h+2)

Proof: Following the same argument as above and by taking into account that, in
this case,

1. each vertex of type z is scheduled after each vertex of type y, and
2. the first vertex x of the chain of length A is scheduled at time 0,
the result of the lemma follows immediately.

Theorem 21. Algorithm 1 generates an optimum schedule

Proof: As R < h— f + 2 (see lemma 15), we have that min(As— 41, Bh-fe1) =
Bh_sy1- We know from lemma 18 and lemma 19 that the mean finish time of the
lists S} up to Sy is

S C= 3Vl (Viepaal +3)+ (b= )(Vhepsr + 0 f42) 4

1€S;
+(r=h+ filn= Vacpal =2~ 5.

which nothing else than the lower bound given by in (1) fars — b #1 1 M
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4. CONCLUSION
In this paper, we have presented a linear algorithm to solve the two-machine flow
shop problem in which the n unit execution time (UET) jobs are related by an intree
precedence constraints, so as to minimize simultaneously the overall completion time

and the mean completion time.
For further research, an immediate question to look at would be first the gener-

alization of the above algorithm so as to handle the m-machine case with respect to
the Makespan and the mean finish time. The ideal solution would be the one which
minimizes both criteria simultaneously. Then, secondly, one should look at the same
problem in which the jobs are related by a outtree precedence graph. These two prob-
lems are under study and we believe strongly that they are solvable in polynomial

time, at least for the mono-criterion case.
As far as the complexity aspect is concerned, it would be interesting to know the

minimal precedence graph for which the above two problems become NP-hard.
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