Conférence Internationale en Informatique, CI1I'99, 21-23 Novembre 1999, Annaba, Algérie 182

Software Clinic:
A Different View of Software Maintenance Process

Md. Khaled Khan Torbjorn Skramstad

Peninsula School of Computing and Department of Informatics
Information Technology Norwegian University of Science and
Monash University, Technology
McMahons Road, Frankston, VIC 3199 N-7491 Dragvoll, Trondheim,
Australia. Norway
Fax: +61-3-99044124 Fax: +47 73 591733
Email: khaled khan@infotech.monash.edu.au Email: torbjorn.skramstad@jfi.ntnu.no

Abstract: The increasing size and complexity of many software systems requires a greater emphasis
on an effective software maintenance environment. The activities of the maintenance process should
be well viewed and defined. To support this notion we have proposed a maintenance process view
called software clinic in this paper. This approach has been proposed as an improvement over current
ad hoc practices in software maintenance. In particular, software clinic model has emerged in an
attempt to provide an environment for software maintenance process. The motivation for proposing
this metaphor has actually generated from a maintenance project of a PC based application software.
The approach was the ultimate outcome of the experiences gathered from the project, not the other
way around. The project was not conducted to validate and test the software clinic approach in a real
life setting rather the maintenance project itself has motivated the author to propose the underlying
concepts. The maintenance process view cited in this paper is considered a conceptual framework
derived from a maintenance experience. The experience on software maintenance has also been
described in this paper.

A \ . . % 7
ISeywords;:; Sofiware maintcnance, progam understanc‘hng, reverse engineering, demgn ar‘nfacts.

1 - INTRODUCTION

According to the TEEE standard (ANSVIEEE 1983) the definition of software maintenance is the
“modification of a software product after delivery to correct faults, to improve performance, or to
adapt the product to a changed environment”. The bottom line of this definition is the “software
product after delivery”, not during the production time. Any modification or redesign of a system
carried out during the development stage cannot be considered as software maintenance. Many
software maintenance definitions have been proposed so far, and most of them are consistent with the
IEEE standard.

The magnitude of software maintenance work is much higher than the development as reported by
various papers presented in conferences oft software maintenance sponsored by IEEE Computer
Society. The tasks of software maintenance are considered difficult and complex as widely agreed by
the practitioners and academics reported in various forums. Virtually, no complete maintenance
environment model including its underlying activities, methods and tools used by the process have
been proposed to satisfy the needs. Some scattered guidelines are available for the software managers
to enable them to tailor process models to maintenance projects. In @ddition, management does not
always give much importance to a maintenance project, and this attituce can be well justified by a lack
of adequate measures, structured planning and procedure of maintenarice process (Abran et al., 1995).
- To support various maintenance components, their activities, associa ed methods and tools which are
considered vital for software maintenance process, we have viewed software maintenance in a
different way in this paper, and termed it Software Clinic. The mctivation for proposing this model
was actually generated from a maintenance project of a PC based application software. The approach
was the outcome of the experiences gathered from the project. The project was not carried out to
validate and test the software clinic approach in a real life setting rather the project experience itself
has been a motivating factor for us to propose this approach. This «pproach is considered as a different

Conférence Internationale en Informatique, CII'99, 21-23 Novembre 1999, Annaba, Algérie 183

view of current ad hoc practices in software maintenance. In particular, software clinic model has
emerged in an attempt to view software maintenance in a different way than it is usually done. We
also believe that the nature and activities of software maintenance process essentially do differ from
that of development process (Skramstad ef al. 1992; Khan et al. 1996). In this paper, the word
‘approach’ and ‘model’ are used interchangeably to refer the same thing.

Various aspects of our work are presented in this paper as follows. In section 2 we have cited the
background of our work. Section 3 describes our experience of a maintenance project. Lessons learned
from the project are outlined in section 4 which motivated us to propose the software clinic approach
in section 5. A brief summary of related work is cited in section 6, and finally, section 7 indicates the
direction of further work of our approach.

2 BACKGROUND OF THE WORK

Most personal computer (PC) based systems today are found mainly in small or medium size
companies. Most of these are special-purpose systems originally designed to reside and operate on
PCs. There is a popular trend nowadays to migrate these PC based systems to more efficient
programming languages to get the full benefits of modern powerful PCs. The characteristic of the
project reported in this paper falls in this category. Qur candidate system was a small Inter Bank
Reconciliation System (IBRS) used in a developing country in Asia. A prominent software company
in Asia locally developed the entire system. The company has been long reputed for its pioneer role in
producing several application software used in the region.

Our candidate system was relatively small in terms of lines of code (LOC), and was written in a fourth
generation language (4GL). The system was organized hierarchically included more than 100
 functions and almost 35 data files in various format. The system was capable of providing at least 40
various types of services to the user. The company that developed the system later found that the
system was not portable, and it was not speed wise efficient. The management wondered whether it
was yet possible to transform the system into a more portable and efficient programming language
platform like C keeping the entire system functionality intact. One of the authors of this paper was
assigned the job to look into the project. The author was then a senior programmer of the company. He
realized that it was clearly a reengineering task. He has had a good research experience in sofiware
maintenance from Europe. As an experimental basis an intensive and systematic working environment
was created for this maintenance project.

3 MAINTENANCE PROJECT

The application system was successfully transformed into C language platform within a short time. It
was possible because the total LOC of the system was relatively small.

At the very beginning of the project, the candidate software was treated from an entirely different
point of view. The system was considered as an object that required certain “kealth care’, a term used
in (Ash et al 1994), and the ‘entire body of the system’ will be transformed into a different
programming language platform with a ‘good health’. This attitude towards the system has later
prompted us to define a software clinic model presented in this paper. The entire maintenance project
activity was not aided with any automated tools. A summary of the project experience has been cited
in Figure 1. The various tasks performed and methods used during this project are briefly described
below.

Domain_knowledge: At the beginning of the project, the author was briefed about the application
domain of the system very informal way. An informal scenario of available functions was described
from the user’s point of view. In fact, the domain scenario included three vital information: what
services the system offered, under which environments the system was being used, and who were the
frequent users. It was felt that the information was very important to perceive the system’s application
domain.

Program understanding: The domain knowledge of the system received at the early stage of the project
assisted us a great deal in program comprehension process. Program understanding was considered as
the ‘diagnosis of the system body’. It was realized at the beginning of the project that understanding
the system behavior is the starting point for the maintenance process, and it is one of the difficult tasks
in maintenance if appropriate documents were not available. It was learned that no design documents

Conjérence Internationale en Informatique, CII'99, 21-23 Novembre 1999, Annaba, Algerie 184

as well as no requirement specifications of our candidate system were recorded during the
development time. The system did not follow any sort of coding standard, and not a single page of
documentation was available. One of the original programmers involved in the development of this
system was available for consultations during the early stage of the project. Unfortunately, she was not
able to recall most of the design rationale of the system, however, she provided some specific types of
information about the system, like data structures, call structures and the data-file format. She drew
several informal sketches to express the system dependency because she was completely unaware of
the design conventions used in software engineering. We combined the information gathered from her
with the informal scenario that we already obtained to grasp the overall structure of the system. We
tried to trace manually the flow of execution of the system to keep track of each function.

We exccuted the system a number of times to study its behavior. When we executed the entire
program with real data, the system graduaily exposed its main features. Running the system with real
data input was virtually forcing us to grasp the domain of the system as well as the services it
provided. However, we obtained a better understanding of the code later from code walkthroughs. We
realized that we had to extract syntactic knowledge from the source code to form semantic abstraction
of the system. First mental representation we built was a program model as defined in (Pennington
1987; Mayrhauser et al.1994) by tracking the flow of control structures, call sequences, and scopes of
global and shared variables found in the source code. We tried to find out the architectural description
as a collection of various programming components, which described the interactions among them.
This understanding process later allowed us to identify the fundamental architecture of the system as
well as the interaction of various programming components such as global and shared variables,
function calls and branching structures. All program information obtained from the program
understanding process was clearly documented in a structure format.

[Maintenance requirements |

e project members were briefed
about the application domain

ath ering e informal scenario of functions was
1 ; < : described
health condition of the system Domain T T T T T T—
knowledge used was known
s source code was available written in
4GL

s no design documents were found

o executed the program several times
e one original programmer was available
“ g : . 1 o created a mental model of the system
diagnogs of the DUk I Program e code walkthroughs were perfonﬁxed
Understanding e function-wise the dependency and

control structures were reproduced
o all recaptured information was

= documented

s no automated tools were used

/T/ >/ new design artifacts were produced

rimaion B

e E-R model was prepared
o DFD and SC were drawn
2

“maintenance treatment’

data file format was altered
system was re-corded in C

e each module was first tested separately
e regression test was performed
o wide range of test data were used

Re-testing &
Re-documentation

“monitoring and observation ¢
the system health”

Figure 1: Summary of the Software Maintenance Project Experiences

Conférence Internationale en Informatique, CII"99, 21-23 Novembre 1999, Annaba, Algérie 185

Transformation: This was the ‘treatment’ part of the maintenance project. The system was redesigned
based on the information obtained, and some additional new design characteristics were also included
to increase the performance of the system. Entity relationship mode! was created to keep track of
relationships among different data objects. Data-flow diagrams and structured charts were drawn to
show the functionality and architecture. The design rationale of the new version was slightly different
than the older version. The call structures, control flows, roles of variables were changed to climinate
the design flaws found in the old system. All these documents were verified and inspected by the
project members several times. The system was then coded in C programming language. The
programming task was rather painless and smooth compared to program understanding process.

Re-testing: We later termed this task as ‘observation of the system body’ with test data. The program
code was tested with varieties of test data. Each module was first tested separately, then regression test
was perform to check the completeness of the system. The test data was generated from a wide range
of possibilities. It included not only the real data of the application domain, but also unrealistic data
was fed into the system to determine its behavior. The speed and overall performance of the new
system was much higher than the earlier version. Total disk space taken by the entire system was
much less than the older one.

4 LESSONS LEARNED

It has also been realized that it is easy to recover the complex artifact for the project members if they
are familiar with the implementation domain of the system and the size of the software is small. The
scale of the candidate software is an important aspect in software maintenance (Bennett, 1995). Based
on this maintenance project experience we have later developed a maintenance model: Software
Clinic. We are now in position to describe the basic components of our model and their associated
methods, tools, output products of the components and sources of input materials of the components.

5 COMPONENTS OF SOFTWARE CLINIC

It is believed that software maintenance process should consist of an orderly and well-defined set of
activities to achieve a certain goal. The major activities of the process must be able to create a well-
defined maintenance environment. These activities must be aided with predefined methods,
established tools, and the sources of input materials for the activities. Based on these ideas, we view
software maintenance process completely from a different perspective. We see the process from a
point of view that much more resembles with the medical clinic management approach. The
maintenance process can easily be considered as the ‘health care of the system’ as termed in (Ash et.
al. 1994). We have established an analogy between software maintenance and health care system in
our proposed model. This clinic approach has four major components:

e Informal Scenario and Consultation

e Formal Diagnosis

e Maintenance Treatment, and

e Monitoring and Observation.
Each of these components is associated with some methods, tools, its intermediate output products and
sources of input materials to be fed to other subsequent activities. There is a feedback loop exists
between two subsequent components. The software clinic view of the maintenance process is cited in

figure 2. Its major components are briefly described as follows.

)

5.1 Informal Scenario and Consultation

Objective: “Perceive the nature of system health and body™

The activities of this component are activated whenever the process receives a maintenance request.
The user expresses the maintenance requirements and the behavior of the software system ina
scenario form. This scenario includes maintenance requirement specifications, domain knowledge of
the system, and the functional behavior of the software. This scenario assists maintenance
programmers to construct a mental model of the system. To capture some of the requisite knowledge
needed to support maintenance work, this information is essential. This component has five major
activities.

Conférence Internationale en Informatique, C11'99, 21-23 Novembre 1999, Annaba, Algérie

“Perceive the nature of

Analysis of maintenance requiremer
system health & body”

ctivities: Gathering domain knowledge
Familiarity with system behavior
Estimation and measurement

Creating a central repository
Sources of _input:

- Qutput products:

source code Informal Scenario refined requirements

design documents and Consultation domain knowledge

interaction with users program behavior

original programmers, Tools and methods: estimated efforts
interview and inquiry

execution of the program

* Detect detail functions &

construct of system body* Activities:

Program comprehension

Localization
sources of _input’ Impact analysis
refined requirements Formal OUFput products:
source code > 4 maintenance area
refined requirements Diagnosis system architecture
domain knowledge program knowledge
program behavior

esign documents

Tools and methods:
code X-ray

reverse engineering tool
program walkthroughs
program slicing

result of impact analysi,
design documents

“Treatment for better
performance of the Activities: fmplementation plan
system body” Design adjustment
Re-coding
Sources of _input: Preparing operation manuals
maintenance area z Qutput products:
Source code Maintenance new source & complied cod
system architecture Treatment design artifacts
program knowledge range of test data
result of impaci analysis Tools and methods: result of impact analysi,
data file format

design & programming rules\ operation manug
configuration management

documeniation convention
o

o

“Observe the reaction &
side effects of system

Activities: Re-testing
health” Cade inspection & certificati
User trial
Sources of mp_ut,. Monitoring and Ol_JtQut.
new source & compiled code . certified program
design artifact Observation operation manuals
range of test data test data & events
result of impact analysi Tools diid methods: complete design doc.
operation manuals

quality control
test tool & regression testing
code inspection

Execution of the program

Figure 2: Software Clinic: A View of Software Maintenance Process
Activities:

Analysis of maintenance requirements: The maintenance requirement acts as a navigator of the
process, it guides the maintenance process in which direction the project should ahead, which
activities be given priority, and the magnitude of the maintenance work load. Software community has
already accepted that the requirements of software maintenance are quite different than the software
development. Even the approach and the view of these two processes differ from each other

186

Conférence Internationale en Informatique, CII'99, 21-23 Novembre 1999, Annaba, Algérie 187

significantly (Skramstad et al,, 1992; Khan ef al, 1996). It is also important to examine whether the
new change requirements will benefit the user of the system or not. How the new requirements will
Justify the effort of the project in terms of cost, technology and performance. The repeating and
overlapping requirements should also be filtered out at this level, This activity will decide whether the
project should further proceed or not.

Gathering domain knowledge: In this activity, an informal scenario of the candidate software system is
obtained including the domain of the system. Gathering information on the candidate system domain
and application domain is the first step in software maintenance. Application domain includes the
application area on which the system was built i.e., administration, banking, space shuttle; and system
domain includes the programming languages used, supporting operating systems, hardware
configuration etc. The domain knowledge is abstracted informally from the discussions with users and
original developers if available, and by executing the system with real data. The project members use
this information to build a primary mental model of the system. It gives a sense of the nature and

familiarity to the system.

Familiarity with system behavior: The behavior could be expressed in terms of some atomic events.
This activity endeavors to collect and represent a body of relevant knowledge, which determines the
behavior of the system. This information is needed to populate the central repository with descriptions
of a set of basic modules including its behavior and input-output patterns. The central repository can
then be augmented with additional module descriptions derived in the next component.

Estimation and measurement: A structured report must be prepared to estimate the possible cost and
benefit, and the viability of the project. Resources must be estimated, and schedule is to be chalked
out. Priority of the various tasks must be defined, and this priority list can be shifted around any time

as required.

Creating a central repository: All information gathered in this phase is stored together with their
attributes and relationships in a central database. The database cannot be updated, but can be only
populated with data. If it is found that some information collected earlier was not entirely correct, this
couldn’t be wiped out completely from the repository. Every piece of system information and every
act performed will be recorded during the entire project duration.

Tools and methods:
Interview, inquiry, and execution of program with real data.

Saurces of input materials:
Source code, design documents if available, interactions with the users, consultation with the
original developer of the system.

Ouiput products of the component:
Central repository, estimated efforts and measurements, application domain knowledge, program
behavior, refined maintenance requirements.

5.2 Formal diagnosis =

Objective: “Detect detail functions and construct of the system health and body”

There already exists mature technology in this area such as debuggers, reverse engineering tools,

anhnicriian nwa Lo

program slicing, impact analysis and so on. Information on such tools and techniques are found
(Carmichael er al. 1995; Arnold, 1993). It has three major activities as outlined below.

Activities: ;

Program comprehension: The source code must be x-rayed, as we term them, if the design documents
are missing or unreliable. Code X-ray is a synonym of reverse engineering technique first referred in
(Khan et al. 1996) ‘

A major part of the total efforts spent on a software maintenance project is consumed in program
understanding task (Chapin, 1988). It was obvious that maintenance programmers have to capture the
intentional structure of a software system and its embedding organization in terms of dependency
relationships among programming components. The components are dependent on each other for
some goals to be achieved, functions to be carried out and resources to be exchanged. Some automatic

Conférence Internationale en Informatique, CI11'99, 21-23 Novembre 1999, Annaba, Algérie 188

and semi-automatic program understanding tools are available in the market.

Localization: The exact locations in the source code where the proposed maintenance to be performed
are identified. It is also important to trace other components, which are directly or indirectly related to
the maintenance locations in the system.

Impact analysis: Impact analysis is an important and well-known problem in software maintenance. A
good number of research works has been published on this area in (Bohner et al. 1996). A high level
definition of impact analysis has been proposed in (Queille ef al. 1994) as “The task of assessing the
effects of making a set of changes to a software system”.

The impact analysis is triggered to trace expected and unexpected behavior of the software system
when a set of changes is proposed to the system. Although, there is no widely accepted rule of when
impact analysis should take place in the maintenance process, but it has been suggested in (Barros et
al. 1995) that this analysis is to be performed before the actual modifications are implemented in the
source code.

Impact analysis can be classified into two categories: direct and indirect. In direct impact, when a
modification is introduced it effects directly to the adjacent components, which are visibly related to
the change site. The indirect impact is considered most dangerous and difficult to trace. When a
component behaves unexpectedly due to some changes in the other components not directly related to
that component is considered indirect effect. The analysis is applied to identify potential side effects at
the source code level, but also to determine the impacts at the design level, user documents etc (Barros
et al 1995). Any change itself can be categorized as a cause of three types of ripple effect: potential,
obvious and unknown. Failure to detect any of these ripple effects in safety critical or financial
systems will lead to a catastrophic effect as a whole. Therefore, it is important to control the process
more rigorously to trace all types of ripple effect.

Tools and Methods:
Code X-ray or Reverse engineering tool, program walkthroughs, program slicing.

Source of input materials:
Maintenance requirements, source code, central repository, original programmer, documents
produced in the previous component. :

Output products of the component:
System architecture, program domain, names of the modules where the modifications to be
introduced, result of the impact analysis, complete recovered design documents.

5.3 Maintenance Treatment

Objective: “Treatment for better performance of the system health and body”

In this component the planned modification is implemented at the code level of the system. The design
documents as well as user manuals are rewritten accordingly. The component has four distinct
activities: implementation plan, design adjustment, re-coding, and preparing operation manuals.

Activities.

Implementation Plan: A detail plan is to be worked out on how the madification is to be introduced to
the software. This activity is based on therinformation received from the earlier components.

Design adjustment: The new design is produced to accommodate the maintenance requirements as
well as the old design documents are to be updated.

Re-coding: The programming will be completed according to the updated new design decision. The
re-coded site in the source code is configured with the entire system.

Preparing operation manuals: According to the new version of the software, the user manuals are to be
prepared. The user interface should be clearly described.

Tools and methods:
Design and programming rules, configuration management, compilation, documentation
convention.

Sources of input materials:
System architecture, program knowledge, names of the modules where the modifications to be
introduced, data file formats, result of the impact analysis.

Conférence Internationale en Informatique, CI1'99, 21-23 Novembre 1999, Annaba, Algérie 189

Output products of the component.
Source code of the new system version, executable code, design artifacts, design artifacts of the

previous version, operation manuals, report on impact analysis, and the possible range of the test
data.

5.4 Monritoring and Observation
Objective: “Observe the reaction and side effects of the system health”
This component comprises three activities as follows:

Activities:

Re-testing: Regression testing has to be performed with a wide range of possible test data, capturing
the performance of the modified system with the previous version (Nyary et al. 1995). Every path and
control branches particularly the modified area of the system must pass a rigorous test session with
real data input. Weinberg (Weinberg, 1983) reported in his list of large software disasters that the top
three systems in the list are one-line changes that were not tested. It is, therefore, important to perform

all possible tests before it is certified.

Code inspection and certification: The new version of the system must be inspected whether the
prescribed programming rules are followed, design documents are consistent with the code, and test
- data are adequate and accurate.

User trial: The system will finally be installed in the user’s work premises. The users with their
business data will execute it under the intended-working environment. This can be performed in the
user site, but must be closely monitored by the project team members for a certain period.

Tools and methods:
Test tools, quality control, regression testing, and execution of the entire program.
Sources of input materials:
Source code of the new system version, executable code, user manual, design artifacts, design
artifacts of the previous version, report on impact analysis, and the possible range of the test data.
Qutput products of the component.
Certified program with source code, users manual, design documents, test data and events.
In our framework, program comprehension, software change impact analysis, and re-testing are
considered most critical and important activities. However, if the updated and reliable design
documents are available during the maintenance project then program comprehension becomes simple.

6 RELATED WORK

Researchers and practitioners have proposed a number of software maintenance processes over the
years. They either tried to explain the actual process of software maintenance more precisely or
prescribed a better and effective process model. Some of the specific works on software maintenance
model are found particularly in (Skramstad er al. 1992; Chernika et al. 1994; Ino, 1992; Harjani et al.
1992; Desclaux et. al., 1992; Hinley et al. 1992), The fundamental difference of software clinic model
and other maintenance environment is the view and attitude towards the process. Most of the models
proposed a list of tasks or procedures and their order without addressing the underlying methods,
tools, input and output information associated with each task or procedure.

7 FURTHER WORK
The software clinic view presented in this paper can be developed further using more formal process

modeling approach to get automated tool support. To enrich the technical contents of the model, more
formal relationships among the task components can be established. The mode] can be justified with
its application to a project.

This approach may be integrated into the entire software life cycle which may examine its ability to
synchronize with the development process as well. In such a model, it is important to show that the
development environment supports the underlying maintenance method and activities within a fuller
software life cycle framework. Because, there is a need for a software maintenance process for the
practitioners supporting a fuller software life cycle (Foster, 1992; Chapin, 1988; Rombach ef al.1992).

Conférence Internationale en Informatique, CII'99, 21-23 Novembre 1999, Annaba, Algérie 190

8 CONCLUSION

This paper focuses on another way of viewing the software maintenance process environment. It is
presented to specify the maintenance process more visibly. This approach has visualized the type and
distribution of activities needed for software maintenance process. We define an approach as a set of
tasks coupled with the responsibilities to individual group and process components. This approach is
believed to remove the overlap of tasks and gaps between the activities while it provides coordination,
thereby increases the overall effectiveness of the maintenance process.

REFERENCES

Abran, A., Maya, M. (1995). ‘A sizing Measure for Adaptive Maintenance Work Products’, JEEE
Proceedings Conference on Software Maintenance, 1995, 286- 294,

ANSV/ IEEE (1983). ANSIIEEE Standard 729-1983.

Arnold, R. S. (1993). Software Reengineering, IEEE Computer Society Press, Los Alamitos, 1993.

Ash, D., Alderete, J., Yao, L., Oman, P., Lowther, B. (1994). ‘Using Software Maintainability
Models to Track Code Health’, IEEE Proceedings Conference on software Maintenance,
1994, 154-160

Barros, S., Bodhuin, T., Escudie, A., Queille, J. P., Voidrot, J. F. (1995). ‘Supporting Impact
Analysis: a Semi-Automated Technique and Associated Tool” IEEE Proceedings
Conference on Software Maintenance, 1995, 42- 51,

Bennett, K. (1995). 'Legacy Systems: Coping with Success', IEEE Software, January 1995, 19-23.

Bohner, S. A., Amold, R. S. (1996). Sofiware Change Impact Analysis, IEEE Computer Society
press, Los Alamitos, 1996.

Carmichael, ., Tzerpos, V., Holt, R.C. (1995) . ‘Design Maintenance : Unexpected Architectural
Interactions’, JEEE Proceedings Conference on Sofiware Maintenance, 1995, 134- 137

Chapin, N. (1988). 'Software Maintenance Life Cycle', IEEE proc. conf. on Software Maintenance,
1988, 6-13.

Chernika, R., Overstreet, C. M., Cadwell, A,, Ricei, J. (1994). ‘Issues in Software Process
Automation — From a Practical Perspective’, IEEE Proceedings Conference on Sofiware
Muaintenance, 1994, 109-118.

Desclaux, C., Ribault, M. (1991). ‘MACS: Maintenance Assistance Capability for Software a K. A.
D. M. E’, IEEE Proceedings Conference on Software Maintenance, 1991, 2-12.

Foster, J. (1992). 'Survey Report', European SIG in Software Maintenance Newsletter Issue 3: June

1992, 5-7.

Harjani, D. R., Queille, J. P. (1992). ‘A Process Model for the Maintenance of Large Space Systems
Software’, IEEE Proceedings Conference on Software Maintenance, 1992, 127-136.

Hinley, D., Benneth, K. (1992). ‘Developing a model to manage the software maintenance process’,
IEEE Proceedings Conference on Software Maintenance, 1992, 174-182.

Ino, M. (1992). ‘Current State of Software Maintenance in Japan: In Depth View’, IEEE Proceeding
Conference on Software Maintenance, 1992, 27-29.

Khan, M. K., Rashid, M. A., Lo, B. W. N. (1996). ‘A Task-Oriented Software Maintenance Model’,
Malaysian Journal of Computer Science, University of Malaya, Vol.9, No. 2, Dec., 1996.
36-42. «

Mayrhauser, A. von, Vans, A. M. (1994). ‘Comprehension Processes During Large Scale
Maintenance’, IEEE Proceedings Conference on Software Engineering, 1994, 39-48.

Nyary, E., Sneed, HM. (1995). ¢ Software Maintenance Off loading at the Union Bank of
Switzerland’, IEEE Proceedings Conference on Software Maintenance, 1995, 102- 108,

Pennington, N. (1987). ‘Stimulus Structures and Mental Representations in Expert Comprehension
of Computer Programs’, Cognitive Psychology, Vol. 19, 1987, 295-341.

Queille, J. P., Voidrot, J.F., Wilde, N., Munro, M. (1994). ‘The Impact Analysis Task in Software
Maintenance: A Model and a Case Study’, I/EEE Proceedings Conference on Software
Maintenance, 1994, 234-242.

Rombach, H. D. and Basili, V. (1988): 1A Panel Discussion, Position Statement, JEEE Proc. Conf.

on Software Maintenance, 1988.

Skramstad, T., Khan, M. K. (1992). ‘A Redefined Software Life Cycle Model for Improved
Maintenance’, IEEE Proceedings Conference on Software Maintenance, 1992, 193-197.

Weinberg, G. (1983). ‘Kill that Code!’, Infosystems, , August 1983, 48-49.

	Synthèse-N06-partie2_2.pdf

