Dynamique de la nappe et qualités physico-chimiques des eaux souterraines du lac Fetzara (Nord-Est algérien)

Faouzi Zahi^{*1}, Rachid Djamai², Salah Chaab³, Larbi Djabri³, Abdelmalek Drouiche⁴ & Fethi Medjani⁵

¹Département des Sciences de la Terre et de l'Univers, Université Benyahia Seddik, Jijel.
²Département de Biologie, Université Badji Mokhtar, BP12, 23000, Annaba.
³Département de Géologie, Université Badji Mokhtar, BP12, 23000, Annaba.
⁴Centre de Recherche Scientifique et Technique sur les Régions Arides, Biskra
⁵Département de Géologie, Université Kasdi Merbah, Ouargla

Révisé le 27/06/2012 Accepté le 18/11/2012

ملخص

بحيرة فيذارة هي واحدة من أكبر البحيرات في شمال شرق الجزائر، حيث تبلغ مساحتها حوالي 18600 هكتار. أدرجت رسميا في قائمة المناطق الرطبة ذات الأهمية الدولية، مما يتعين حماية هذا الموقع . أجريت هذه الدراسة لرصد الحالة الراهنة لكيمياء المياه الجوفية وتحديد منشأ الملوحة . بعل النتائج المتحصل عليها بمختلف الطرق تظهر هيمنة السحن الكيميائية الثلاثة التالية : كلوريدات الصوديوم وكلوريدات الكالسيوم وبكربونات بعل النتائج المتحصل عليها بمختلف الطرق تظهر هيمنة السحن الكيميائية الثلاثة التالية : كلوريدات الصوديوم وكلوريدات الكالسيوم وبكربونات بعل النتائج المتحصل عليها بمختلف الطرق تظهر هيمنة السحن الكيميائية الثلاثة التالية : كلوريدات الصوديوم وكلوريدات الكالسيوم وبكربونات الصوديوم. الناقلية الكهربائية للمياه تأرجحت بين 300 وتر0300 ميكروسيمنس/سم، حيث سجلت القيم المرتفعة للناقلية في الشمال الشرقي (وادي ريدات الصوديوم والنولية الكهربائية للمياه المياه تأرجحت بين 300 وتر0300 ميكروسيمنس/سم، حيث سجلت القيم المرتفعة للناقلية في الشمال الشرقي (وادي ريدات الصوديوم والخبوب الشرقي من البحري الكومية وتروسيمنس/سم، حيث سجلت القيم المرتفية في الشمال الشرقي (وادي ريدات الصوديوم المرتفعة للناقلية في الشمال الشرقي (وادي ريدان) ، والجنوب الشرقي من البحيرة (الشرفة). الدراسة الإحصائية من خلال تحليل المكونات الرئيسية (ACP) أظهرت أن عنصري الكلوريد و الصوديوم هما العنصرين الرئيسيين المريشيين المسودين الماليون عن التمعدن العالي للمياه . ويرجع هذا الفائض من التمعدن إلى ارتشاح التكوينات الجوفية و تسلل الموديوم هما العنصرين الرئيسيين المسؤولين عن التمعدن العالي للمياه . ويرجع هذا الفائض من التمعدن إلى ارتشاح التكوينات الجوفية و تسل المياه المياه الليوليون الطونية.

الكلمات المفتاحية: درجة الملوحة - التمعدن - عدوة - Piézométrie - السحن الكيميائية - ACP.

Résumé

Le lac Fetzara est l'un des plus importants lacs de l'extrême Nord-Est Algérien, avec une superficie de 18600 ha. Il a été officiellement classé sur la liste des zones humides d'importance internationale, ce qui impose une protection de ce site. Cette étude a été menée afin d'étudier l'état actuel de la chimie des eaux souterraines et de déterminer l'origine de la salinité. Les résultats analytiques montrent la présence de trois faciès chimiques : chloruré sodique, chloruré calcique et bicarbonaté sodique. La conductivité électrique des eaux oscille entre 350 et 3500 μ S/cm avec de fortes valeurs enregistrées dans les régions Nord-Est (Oued Zied) et au Sud-Est du lac (Cheurfa). L'étude statistique par l'analyse en composantes principales (ACP) montre que les chlorures et le sodium sont les principaux éléments responsables de la forte minéralisation des eaux. Cet excès de minéralisation serait lié éventuellement au lessivage des terrains traversés ou par l'infiltration des eaux de surface qui sont fortement influencées par la forte évaporation en période estivale et les échanges ioniques avec la matrice argileuse.

Mots clés : Salinité - Minéralisation - Contamination - Piézométrie - Facies chimique - ACP.

Abstract

Fetzara lake is one of the most important lakes in the North-Eastern of Algeria; with an area of about 18600 ha, it was officially classified on the list of Wetlands of International Importance. This dictates the protection of this location. This study was conducted to examine the current state of groundwater chemistry and the origin of their salinity. The results obtained show a presence of three chemicals facies: sodium chloride, calcium chloride and sodium bicarbonate. The electrical conductivity of groundwater oscillates from 350 to 3500 μ S / cm where high values are recorded in the North-East (Oued Zied) and the South-East of the lake (Cheurfa). Statistical study by principal component analysis (PCA) showed that chloride and sodium are the main elements responsible for the high mineralization of the water. This excess of mineralization is due to the leaching of subsurface formations and surface waters infiltration; these are strongly influenced by evaporation and ionic exchanges with clay matrix.

Key words: Salinity – Mineralization – Contamination – Piezometry - Chemical facies - PCA.

^{*}Auteur Correspondant : zahi_faouzi@yahoo.fr

1. INTRODUCTION

Généralement, il est bien admis que l'eau dans la nature est rarement pure car différents éléments peuvent altérer sa constitution de base par diffusion, dissolution ou par un simple mélange. La composition chimique de l'eau dépend de l'environnement dans lequel elle se trouve sous forme d'un processus d'écoulement ou d'un stockage. Cette composition joue un rôle important dans la détermination de sa qualité (salinité, dureté, ...etc.) et ses usages (alimentation en eau potable, irrigation, industrie...etc.). Plusieurs études ont été effectuées sur les eaux et les sols de la région du Fetzara afin de suivre l'évolution de la salinité, de mettre en évidence ses origines et les facteurs régissant celle-ci [1-6]. Dans la région du lac Fetzara, la chimie des eaux (superficielles et souterraines) est souvent influencée par l'effet de la dissolution des formations géologiques, l'évaporation des eaux, les rejets industriels et l'activité agricole. L'objectif principal de la présente étude est de contrôler l'état actuel de la chimie des eaux souterraines, son évolution dans l'espace et la compréhension des différents processus qui sont à l'origine de la salinité des eaux.

2. CARACTERISTIQUES DE LA REGION D'ETUDE

Le lac Fetzara est situé au Nord-Est de l'Algérie, il se trouve à 18 km au Sud-Ouest de la ville d'Annaba. Il s'allonge sur 17 km d'Est en Ouest et sur 13 km du Nord au Sud avec une superficie d'environ 18600 ha (Fig. 1).

Cette région est soumise à un climat méditerranéen caractérisé par deux saisons distinctes, l'une fraîche et humide et l'autre chaude et sèche [7].

Sur le plan géologique, la région d'étude comporte à la fois des affleurements de terrains métamorphiques et éruptifs au Nord et Nord-Est du lac Fetzara, et des terrains sédimentaires occupant le reste de la région (Fig.1). Les affleurements métamorphiques sont datés du Précambrien au Paléozoïques, ils sont présents au niveau du massif de l'Edough et ses environs constituant la limite Nord du lac, ils sont composés de Gneiss et de Métapélites [8-14]. Les gneiss formant la base [15] ont été datés par la méthode U-Pb qui donne les âges de 606 à 595 Ma pour les orthogneiss et de 630 ± 50 Ma pour les paragneiss [13]. Les métapélites qui viennent juste au-dessus des gneiss consistent en deux unités principales : des micaschistes à grenat et souvent à disthène en alternance avec des niveaux de marbre et de skarns d'épaisseur métrique, et une unité supérieure d'âge Paléozoïque constituée de schistes alumineux à andalousite et staurotide en alternance avec des quartzites feldspathiques [16]. Ces formations ont subit un trajet polycyclique de température et pression durant le métamorphisme [17]. Les terrains cristallophylliens sont en partie recouverts par un système de nappes sédimentaires résultant de l'activité tectonique Oligo-Miocène. Ces nappes sont constituées de marnes, d'argiles et de grès crétacés (flysch crétacé), et de grès Oligo-Miocènes (argiles et grès numidiens) [8,10].

Figure 1. Carte géologique et géomorphologique de la plaine d'Annaba.

Du point de vue hydrogéologique, le lac Fetzara occupe la région Ouest de la plaine d'Annaba, il est entouré par une nappe superficielle discontinue. La lithologie de cette nappe est constituée par des alluvions récentes (sables, limons et argiles) avec une texture argilo-sableuse à argilo-limoneuse, son épaisseur varie entre 2 et 10 m, donc à potentialités hydrauliques très limitées.

3. MATERIEL ET METHODES

Afin d'étudier la qualité des eaux souterraines de la région du lac Fetzara, l'origine de la salinité et son évolution spatiale, nous avons procédé à une étude de la chimie des eaux ainsi que la dynamique de la nappe. Trois campagnes de mesures piézométriques ont été effectuées aux mois de janvier, mars et mai 2007 sur quarante et un (41) puits de la nappe phréatique à la périphérie du lac. Une analyse complète des éléments chimiques a été effectuée sur seize (16) échantillons d'eau prélevés au mois de mars 2007. La conductivité électrique est mesurée in situ, en même temps que les mesures piézométriques.

L'analyse des éléments chimiques s'effectue selon les méthodes d'analyse standard : les cations par complexométrie et absorption atomique à flamme (Perkin-Elmer 1100), les anions et les éléments traces sont dosés par titrimétrie et spectrophotométrie (spectrophotomètre Photolab Spektral WTW) [18]. Le traitement des résultats a été effectué grâce aux logiciels *Surfer8* pour la cartographie, *Diagrammes* pour les faciès chimiques et l'aptitude des eaux à l'irrigation et *Spadv5.5* pour l'analyse statistique.

4. RESULTATS ET DISCUSSION

4.1 Piézométrie

D'une manière générale, la morphologie de la surface piézométrique suit celle de la topographie et son allure reste la même pendant les trois campagnes (janvier, mars et mai 2007). Les cartes piézométriques (Fig. 2, 3 et 4) présentent un écoulement de direction Nord-Sud dans la partie Nord du lac (les piémonts du massif de l'Edough) et une direction Sud-Nord dans la partie Sud (Cheurfa et El Eulma), ce résultat est conforme à celui des cartes piézométriques élaborées en 1993 et 2007 [19,20]; donc la nappe suit le modèle topographique et le lac constitue une zone de convergence des eaux. L'examen des cartes piézométriques montrent que les parties Sud et Sud-Est du lac Fetzara se caractérisent par un gradient hydraulique variant entre $0.13 \ 10^{-2}$ et $0.5 \ 10^{-2}$, par contre au niveau de la zone Nord et Nord-Ouest le gradient est de $0.83 \ 10^{-2}$, traduisant ainsi une faible perméabilité et/ou une pente importante des terrains (piémonts du massif de l'Edough). Deux types d'échanges semblent exister et mettent en évidence une interconnexion entre les différents systèmes (lac, oueds et nappe). Le premier met en évidence une alimentation du lac par la nappe et les bordures, quant au second, il montre le drainage du lac et de la nappe par l'oued Meboudja. Par contre, la relation de la nappe avec les autres oueds (El Hout, Mellah et Zied) est non identifiée. Ceci est dû au fait que les oueds existants sont temporaires et présentent de très faibles débits.

4.2 Faciès chimique

La représentation des analyses chimiques sur le diagramme de Stiff permet d'avoir une approche globale de la composition chimique des eaux. Le diagramme montre que les eaux souterraines du lac Fetzara, présentent une dominance de deux faciès chimiques :

• le premier avec un faciès chloruré sodique représenté par la majorité des puits (Fig. 5), l'existence de ces deux éléments (Na^+ et CI⁻) est liée d'une part à la dissolution des formations évaporitiques riches en halite [21], et d'autre part aux apports salifères du lac Fetzara par l'effet de l'évaporation [4,5].

• le second faciès est bicarbonaté sodique surtout sur les puits P22, P30 et P34, ces points se positionnent à l'Ouest et au Nord-Ouest du lac (Fig. 5). La forte présence des bicarbonates est due principalement à la dissolution des cipolins par les apports souterrains sortant du socle métamorphique de l'Edough [21].

Figure 2. Carte piézométrique de la région du lac Fetzara (Janvier 2007)

Figure 3. Carte piézométrique de la région du lac Fetzara (Mars 2007)

Figure 4. Carte piézométrique de la région du lac Fetzara (Mai 2007).

Figure 5. Faciès chimique des eaux souterraines (diagramme de Stiff)

4.3 La salinité

La conductivité électrique est un excellent indicateur de la minéralisation qui reflète la concentration de l'ensemble des minéraux dissous. La figure 6 montre une variabilité importante des valeurs entre 350 et 3500 µS/cm avec une majorité se situant entre 350 et 1000 µS/cm. Elle varie entre 1000 et 2000 µS/cm dans quelques échantillons et dépasse 2000 µS/cm dans les zones Sud-Est (Cheurfa) et Nord-Est (Oued Zied), ce sont les deux zones les plus affectées par le phénomène de salinisation (Fig. 6). Deux groupes d'éléments chimiques sont à l'origine de cette salinité : les éléments salifères (Ca^{2+} , Mg^{2+} , SO_4^{2-} , Na^+ et CI^-) et les éléments carbonatés (Ca²⁺, Mg²⁺ et HCO₃). Plusieurs études indiquent que la forte salinité des eaux de la nappe superficielle est liée à plusieurs origines : la dissolution des dépôts évaporitiques existant sous forme de lentilles, la dissolution des formations carbonatées du socle métamorphique existant au Nord et Nord-Ouest du lac Fetzara (Dj. Edough) [19], ainsi que l'existence du phénomène d'échange de base entre les eaux de la nappe et les formations argileuses [21].

4.4 La dureté

La qualité d'une eau est caractérisée par sa dureté rapportée à la teneur en carbonate de calcium et de magnésium, les valeurs de la dureté ou le titre hydrotimétrique :

TH = (r Ca^{2+} + r Mg^{2+})*5 en degré français (°F). La figure 7 fait apparaître quatre catégories des eaux selon leur dureté ; modérément douces (9%), assez douces (22%), dures (51%) et très dures (18%). D'une manière générale, les eaux souterraines de la région du Fetzara ont une qualité dure à très dure avec des valeurs dépassant les 32 °F. Cette dureté est due à la forte évapotranspiration qui caractérise la région en période estivale et au lessivage des formations géologiques suite aux apports météoriques, ce qui entraîne un enrichissement des nappes en sels solubles particulièrement en Ca²⁺ et Mg²⁺.

4.5 Aptitude des eaux à l'irrigation

La salinité peut entraîner des effets nocifs conséquents en raison de la fixation de certains sels par les colloïdes du sol tel que le sodium qui exerce alors une action néfaste sur la végétation de façon indirecte et en dégradant les propriétés physiques des sols qui deviennent compacts et asphyxiants pour les plantes [22]. Lorsque la concentration en ions Na⁺ à l'état soluble dans le sol est importante, ces ions remplacent fréquemment le Ca^{2+} sur le complexe absorbant. Cet effet peut être provoqué lors d'un contact entre une eau chargée en sels et un sol [23]. Le risque est déterminé à partir de la valeur du sodium adsorbé (Sodium Absorption Ratio : SAR). Pour une même conductivité électrique, le risque est d'autant plus grand que le coefficient est plus élevé. Le SAR est utilisé en combinaison avec la conductivité électrique pour apprécier la qualité d'une eau. Le report des résultats sur le diagramme de Richards permet de classer les différents types d'eau d'irrigation et d'indiquer les diverses utilisations selon la tolérance des cultures (Fig. 8).

$$SAR = \frac{Na^{+}}{\sqrt{\frac{Ca^{2+} + Mg^{2+}}{2}}}$$

Les éléments (Na^+, Ca^{2+}, Mg^{2+}) sont exprimés en milliéquivalent par litre.

Le diagramme de Richards (Fig. 8) fait apparaître pour les eaux souterraines du lac Fetzara trois classes : *Bonne, Admissible, Médiocre*. Chacune de ces classes présente ses propres caractéristiques :

- **Bonne** (C_2S_2): eau pouvant être utilisée sans contrôle particulier pour l'irrigation des plantes moyennement tolérantes aux sels et sur les sols ayant une bonne perméabilité. Cette catégorie est présente uniquement au niveau de certains puits (P15, P22) dans la commune d'El Eulma et le puits P32 dans la partie Nord du lac (piémonts de l'Edough).

- Admissible $(C_3S_1-C_3S_2)$: eau convenant à l'irrigation des cultures tolérantes aux sels sur des sols bien drainés. L'évolution de la salinité doit être cependant contrôlée. Cette classe représente la majorité des puits, elle se localise au Nord et Nord–Est du lac (Oued Zied).

- Médiocre (C_3S_3 - C_4S_1): eau fortement minéralisée pouvant convenir à l'irrigation de certaines espèces bien tolérantes aux sels et sur des sols bien drainés et lessivés. Ces eaux de qualité médiocre occupent la partie Sud-Est du lac près de Cheurfa (P7 et P9)

Figure 6. Variations de la conductivité électrique (Mars 2007)

Figure 7. Classification des eaux selon la dureté.

Figure 8. Classification des eaux d'irrigation en fonction du SAR et de la conductivité électrique (Diagramme de Richards)

4.6 Les éléments traces métalliques

Les eaux souterraines de la région du lac Fetzara ont de faibles concentrations en fer, chrome, manganèse, zinc et cuivre qui restent inférieures aux normes de potabilité fixées par l'OMS (2006). Par contre le plomb et le nickel présentent des concentrations très élevées. Les concentrations en plomb dépassent largement les normes de potabilité (0.01mg/l), surtout dans la région Nord du lac Fetzara où les teneurs varient entre 0.12 et 0.6 mg/l, mais elles sont très faibles à nulles au Sud du lac. Les teneurs en nickel dépassent également les normes de potabilité (0.02 mg/l) dans la majorité des puits, elles varient entre 0.02 et 0.63 mg/l. L'excès de ces deux éléments dans les eaux souterraines peut constituer une menace pour l'environnement et la santé des habitants qui utilisent ces eaux.

4.7 Analyse en composantes principales (ACP)

Le but de cette analyse statistique (ACP) est de dégager les associations qui peuvent éventuellement exister et de ressortir les différents points d'eau qui possèdent des concentrations élevées en éléments chimiques par rapport aux autres. Cela nous permettra de donner une idée préalable sur les différents éléments et leurs origines.

Nous ne présenterons dans cette étude que la projection des variables et des individus sur le plan (F1-F2) qui porte une inertie totale d'ordre de 44.62 %, les autres axes des variances moindres donnent presque tous la même information (Fig. 9).

Figure 9. Variances expliquées par les cinq premiers axes.

Le cercle formé par les deux axes F1 F2, montre selon l'axe horizontal F1 (24.80 % de la variance) la domination de la minéralisation. Les teneurs en éléments majeurs (Na^+ , Mg^{2+} , HCO₃⁻ et SO₄²⁻) et la conductivité électrique sont importants au niveau des puits P30 et P38 de la partie Nord du lac Fetzara. Par contre, les puits du pôle opposé (P15, P18, P22 et P41) sont moins minéralisés (Fig. 10). Ces sels d'origines diverses sont lessivés par les eaux souterraines ou par contact direct entre l'aquifère et le lac Fetzara, constituent autant de facteurs pouvant favoriser la salinisation des eaux souterraines par infiltration des eaux du lac qui sont déjà chargées en éléments chimiques.

a- Cercle F1 F2

b- Plan des individus F1 F2

Figure 10. Analyse en composantes principales : (a) Cercle F1 F2 ;(b) Plan des individus F1 F2

L'axe vertical F2 porte 19.82 % de la variance, les phosphates, le nickel et le plomb expriment sa partie positive, représentée par les puits P24, P26, P32 et P34 dans la partie Nord-Ouest du lac. Ces métaux lourds peuvent être d'origine industrielle (rejets liquides de la zone industrielle de Berrahal), l'excès de ces éléments constitue une menace pour l'environnement et la santé des habitants qui utilisent les eaux de ces puits. Par contre, le pôle négatif est présenté par le cuivre, le potassium, les chlorures et les nitrates, il correspond aux puits P1, P5, P7 et P9 dans la partie Sud-Est du lac Fetzara (Cheurfa), la présence de ces éléments (Cu^{2+} , K^+ , Cl^- et NO_3^-) pourrait traduire des processus de salinisation et des phénomènes de fixation de ces éléments par certains minéraux argileux, c'est le cas particulièrement du K⁺.

5. CONCLUSION

L'interprétation des données analytiques par les différentes méthodes nous a permis de constater que le sens global de l'écoulement des eaux souterraines met en évidence deux types d'échanges entre les différents systèmes (lac, oueds, nappe). Le premier montre une alimentation du lac par la nappe et les bordures, alors que le second indique un drainage du lac et de la nappe par l'oued Meboudja.

Les eaux souterraines de la région du Fetzara ont des conductivités électriques élevées, dûes à la présence de certains éléments chimiques en concentrations élevées (HCO3, Cl, Na⁺ et Ca^{2+}). Elles ont une qualité dure à très dure et caractérisées par la dominance de deux faciès chimiques : l'un bicarbonaté sodique situé dans la partie Ouest du lac et l'autre chloruré sodique sur le reste de la région. L'étude de l'aptitude des eaux souterraines à l'irrigation, a révélé que les eaux de la majorité des puits ont une qualité admissible, ces eaux sont en général acceptables pour l'irrigation des cultures tolérantes aux sels sur des sols bien drainés, mais nécessitent un contrôle préalable de l'évolution de la salinité.

L'étude statistique par l'analyse en composantes principales (ACP) a montré que les chlorures et le sodium sont à l'origine de la forte minéralisation des eaux, elle est surtout enregistrée dans la région de Cheurfa au Sud et Oued Zied au Nord. Ce phénomène est dû à une contamination naturelle par la dissolution des minéraux des terrains traversés (roches carbonatées, formations salifères et argiles) ou à l'infiltration des eaux salées du lac Fetzara qui sont sous l'influence de la forte évaporation.

REFERENCES.

[1] Durand J., 1950. Premiers résultats de l'étude des sols du lac Fetzara. *Document* Inédit ; Service

d'Etude des Sols, Alger, 112p.

[2] Ifagraria., 1967. Etude générale de la mise en valeur agricole des plaines côtières d'Annaba. *Société Ifagraria, Rome ; Partie I, 169p.*

[3] AJCI., 1985. Etude de la faisabilité du projet d'aménagement agricole de la région périphérique du lac Fetzara. Agence Japonaise de Coopération Internationale, Vol. 3. 56 p.

[4] Djamaï R., 2007. Contribution à l'étude de la salinité des sols et des eaux du système endoréique du lac Fetzara (Nord-Est algérien). Approche géochimique et évolution spatio-temporelle des phénomènes. Thèse de doctorat d'état, Institut National Agronomique d'Alger, Algérie, 167p.

[5] Djamaï R., Djamel F., Laïfa A., Benslama M., Daoud Y & Vallès V., 2011. Le concept d'alcalinité résiduelle et évolution géochimique des processus. Application aux sols salés du lac Fetzara (Nord-est Algérien). *Revue des Sciences et de la Technologie, Synthèse 23, 90-98.*

[6] Zahi F., Djamaï R., Drouiche A.M & Medjani F., 2011. Contribution to study of soil salinity in the region of Fetzara lake (North-east of Algeria). *Journal of Materials and Environmental Science, Vol.2* (S1), 439-444.

[7] DGF., 2002. Atlas des 26 zones humides algériennes d'importance internationale, *Direction Générale des Forêts*, *Algérie*, 53-55.

[8] Hilly J., 1962. Etude géologique du massif de l'Edough et du Cap de Fer (Est constantinois), *Bull-tin du Service de la Carte Géologique de l'Algérie*, $n^{\circ}19$, 339p.

[9] Gleizes G., Bouloton J., Bossiere G & Collomb P., 1988. Données lithologiques et pétrostructurales nouvelles sur le massif cristallophyllien de l'Edough (Est Algérie). *Comptes Rendus de l'Académie des Sciences, Paris, 36, 1001-1008.*

[10] Marignac C & Zimmermann J.L., 1983. Ages K-Ar de l'évènement hydrothermal et des intrusions associées dans le district minéralisé Miocène d'Aïn-Barbar (Est Constantinois, Algérie). *Mineralium Deposita, 18, 457-467.*

[11] Monie P., Montigny R & Maluski H., 1992. Age Burdigalien de la tectonique ductile extensive dans le massif de l'Edough (Kabylie, Algérie). Données radiométriques 39As - 40Ar. *Bulletin de la Société Géologique de France*, $n^{\circ}5$, 571-584.

[12] Aissa D., Marignac C., Cheilletz A & Gasquet D., 1998. Géologie et métallogénie sommaire du massif de l'Edough (Nord-est. Algérie). *Mémoire du Service Géologique de l'Algérie*, n°9, 7-55.

[13] Hammor D & Lancelot J., 1998. Métamorphisme miocène de granites panafricains dans le massif de l'Edough (Nord-est de l'Algérie). *Comptes Rendus de l'Académie des Sciences, Vol. 327, 391-396.* [14] Laouar R., Boyce A.J., Ahmed-said Y., Ouabadi A., Fallick A.E & Toubal A., 2002. Stable isotope study of the igneous, metamorphic and mineralized rocks of the Edough complex, Annaba, North-east Algeria. *Journal of African Earth Sciences, Vol. 35* (2), 271-283.

[15] Ahmed_Said Y & Leake B. E., 1993. The Edough leptynites, Annaba, North-east Algeria, are they good indicators to the origin of the biotite gneisses. *Bulletin du Service Géologique de l'Algérie, Vol.4, (2), 99-107.*

[16] Ilavsky J & Snopkova P., 1987. Découverte d'acritarches paléozoïques dans les terrains métamorphiques de l'Edough (Wilaya d'Annaba, Algérie). *Comptes Rendus de l'Académie des Sciences, Paris, 305, 881-884.*

[17] Hammor D., 1992. Du panafricain au miocène: 600 millions d'années d'évolution polycyclique dans le massif de l'Edough (Algérie nord orientale). Retracés par la pétrologie, la tectonique et la géochronologie (U/Pb, Rb/Sr, Sm/Nd et ³⁹Ar/⁴⁰Ar). Thèse de doctorat, l'UST Languedoc,Université de Montpellier II, France , 205 p.

[18] Rodier J., 1996. L'analyse de l'eau, eaux naturelles, eaux résiduaires, eau de mer, Ed. Dunod, $8^{\text{ème}}$ édition, Paris, France, 1383 p. [19] Djabri L., Rouabhia A., Hani A., Lamouroux C & Pulido-Bosch A., 2008. Origin of water salinity in a lake and coastal aquifer system. *Environment Geology, Vol. 54, 565–573.*

[20] Rouabhia A., Djabri L., Hadji R., Baali F., Fehdi C & Hani A., 2012. Geochemical characterization of groundwater from shallow aquifer surrounding Fetzara lake North-east Algeria. *Arabian Journal of Geosciences, Vol. 5, 1-13.*

[21] Debièche T.H., 2002. Evolution de la qualité des eaux (salinité, azote et métaux lourds) sous l'effet de la pollution saline, agricole et industrielle. Application à la basse plaine de la Seybouse, Nordest Algérien. Thèse de doctorat, Université Franche-Compte, France, 235 p.

[22] Todd K., 1980. Groundwater hydrology. 2^{ieme} Edition, John Wiley & Sons, New York, 510 p.

[23] Schoeller H., 1962. Les eaux souterraines. Hydrologie dynamique et chimique. Recherche, exploitation et évaluation des ressources. Masson, Paris, 642 p.