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SUMMARY

Angiotensin I-converting enzyme (ACE) was purified from pig lung and serum to compare their physicochemical,
catalytic and chemical properties with a particular focus on their sugar moieties; pig and rat pulmonary enzymes

were also compared. ‘

For the three forms of ACE the molecular mass was 17

2 + 4 kDa on SDS-PAGE. The isoelectric point (pI) was 4.4

— 4.8 for both pulmonary ACEs but lower for serum ACE (4.3 — 4.6) ; neuraminidase increased both pl to 4857
Serum and lung porcine ACEs exhibited identical Km, Kcat, optimal pH and optimal chloride activating

~ concentration for two synthetic specific substrates. Fr
-between serum and pulmonary ACEs, and between pig an
hydrophobic amino-acids. From sugar analysis, serum

om amino-acid analysis, slight differences were shown
d rat, in particular both pulmonary forms contained more
ACE was more glycosylated (11.9%) than pig and rat lung

enzymes (8.6% and 8.8%, respectively); neither of the three ACEs contained N-acetylgalactosamine but only the
sugars characteristic of N-glycosylation. Pig serum ACE was richer in N- acetylneuraminic acid than the pulmonary
from that corroborates with differences in pl; both forms presented sugar molar ratios prediting mixtures of N-
acetyllactosaminic and oligomannosidic chains, or hybrid structures, for rat lung ACE also but differently. Thus,
membrane-bound and soluble ACEs have different chemical compositions that could correspond to translational and
post-translational events in the endothelial cell, in particular for anchoring of the membrane-bound form and for
excreting a soluble form protected against hepatic lectins. Nevertheless, the differences on amino-acid and sugar

compositions have no influence on ACE catalytic properties.

Key-words: angiotensin I-converting enzyme; endothelium; isoelectric point ; glycoproteins ; membranous

enzymes.

The abbreviations used are : ACE, angiotensin I-converting enzyme (peptidyl- dipeptidase, EC 3.4.15.1) ; FAPGG,
furylacryloyl-phenylalanyl-glycyl-glycine ; HHL, hippuryl—histidyl-leucine (hippuric acid as benzoylglycine) ;
IEF , isoelectric focusing ; SDS-PAGE, sodium dodecylsulfate/ polyacrylamide-gel electrophoresis.

INTRODUTION

Aangiotensin [-converting enzyme (ACE) ( or
peptidyldipeptide hydrolase EC.3.4.15.1) is a key
enzyme in renin- angiotensin and kallikrein-kinin
systems, by removing the carboxyterminal dipeptides
of angiotensin I and bradykinin, thereby actiavting
the former into angiotensin II, a vasopresseur, and
degrading the latter, a vasodilator. ACE is a zinc-
containing glycoprotein which is expressed in various
tissues under different molecular forms, but always
with one polypeptide chain. The somatic isoenzyme
seems to exist under two molecular forms, a
membrane-bound form and a soluble form. The

membrane-bound form is mainly located in vascular
endothelial cells as an ectoenzyme in particular from
pulmonary microvasculature (Caldwell et al., 1976;
Ryan et al., 1976) but also on the brush-border of
renal tubular and intestinal epithelial cells (Bruneval
et al., 1986), and in monocytes and macrophages
(Friedland et al.,1978). On the other hand, testicular
cells synthesize a germinative isoenzyme with a
lower molecular mass, around 100 versus around 160
kDa for the somatic enzyme (Kumar e al., 1989;
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Ehlers et al., 1991). The latter has two highly
homologous domains each bearing a' putative
catalytic site, whereas the smaller isozyme from

germinative cells has a single domain therefore only
one active site and would represent the ancestral,
non-duplicated form of the ACE gene (Alhenc-

Gelasef al., 1990). A circulating soluble form of
ACE is found in blood plasma and is most likely
released by the vascular endothelial cells (Hayes et
al., 1978; Baudin et al., 1997b). In particular, several
recent studies have shown that a specific secretase is
able to liberate a soluble ACE form from plasma
membrane (Wei et al., 1991; Beldent et al., 1993).
The relative role of the plasma enzyme in the
mechanisms responsible for the control of the
vascular tone has not been clearly established,
eventhough it seems important to know in regard of
the number of ACE inhibitors used in the treatment
of hypertension; in particular, some inhibitors have
been described for binding on tissular targets, such as
. the vascular endothelium (Unger et al., 1984; Baudin
and Drouet, 1989). On the other hand, plasma ACE
level is an useful marker of endothelial cell injury
(Drouet et al., 1988); the clinical interest in plasma
ACE also results from its abnormal elevation in
granulomatous diseases, such as sarcoidosis in which
activated macrophages synthesize and release large
amounts of the enzyme (Friedland ez al., 1977;
Bénéteau-Burnat and Baudin, 1991).

Whether endothelial ACE is released by a specific
proteolytic mechanism or by another way, for
example incriminating glycosylations, it seemed to us
relevant to compare at both physicochemical and
enzymological levels ACE released by endothelial
cells, the soluble form, and ACE anchored in plasma
membrane of endothelial cells, the membranous
form. The latter was purified from pig lung as it
contains as number of capillaries anchoring
membranous ACE; a soluble form of the enzyme was
purified from pig serum. We compared their chemical
compositions, with a particular focus on their sugar
moieties, and some of their enzymatic = and
physicochemical properties.

MATERIALS AND METHODS
1- Materials and reagents:

Hippuryl-L-histidyl-L-leucine (HHL) was purchased
from Bachem (Bubendorf, Switzerland), [glycine-1-

"%C]-HHL from New England Nuclear (Boston, MA, .

USA) and furylacryloyl-phenylalanyl-glycyl-glycine
(FAPGG) from Sigma (Saint Louis, USA). All other
reagents of analytical grade were provided by Merck
(Darmstadt, Germany) or Prolabo (Paris, France).

2- Purification of lung and serum ACEs:

Tissues were collected from freshly slaughtered
normal Large White pigs. Lung and serum ACEs

were purified by a protocol including DEAE-
Spherodex  ion-exchange (for lung only), lisinopril-
Sepharose affinity chromatography and superose 12
size-exclusion  chromatography as  previously
described (Baudin et al., 1991).

ACE was also purified from rat lung (Wistar) using a
similar protocol as for pig lung and as previously
described (Bénéteau-Burnat et al, 1994). Each
purified preparation was extensively dialyzed against
2 mM Tris, 0.1 M NaCl, 1 mM ZnCl,, pH=8.0 buffer
for complete restoring of ACE activity.

3- Determination of ACE activity:

ACE activity was determined on two substrates : i) a
radiometric assay used an isotopic dilution of the
radiolabelled substrate ["*C-glycine]-HHL (Baudin et
al., 1990); ii) a spectrophotometric assay used the
substrate FAPGG with a continuous kinetic measure
(Bénéteau-Burnat et al., 1986) for both assays one
unit is defined as the quantity of enzyme that
hydrolyses 1umol of substrate per minute at 37°C.
Proteins were measured by the Lowry’s method
(1951) or by spectrophotometric determination at 280
nm using the coefficient of absorption which we
previously measured (Baudin et al., 1995).

4- Electrophoreses:

Sodium dodecylsulfate- polyacrylamide
electrophoresis (SDS-PAGE) isoelectric focusing
(IEF) were performed on LKB-Pharmacia (Uppsala,
Sweden) systems and using Biorad (Richmond, USA)
or Pharmacia materials, respectively, as previously
described (Baudin et al., 1991; Bénéteau-Burnat et
al., 1994).

5- Amino-acid analysis:

Quantitative amino-acid analysis was carried out by

“ion-exchange chromatography with analyzer model

119CL (Beckman-Fullerton, USA) after hydrolysis
with 5.6 N HCI in evacuated sealed glass vials for 24
hours at 110°C of 200 pg of purified ACE.
Amino-acids were eluted by increasing pH gradient
of sodium citrate buffer and quantified by ninhydrin
reaction. The standard was 2.5 M mixture of free
amino-acids (Beckman). Cysteine was determined as
hemi-cysteinyl; tryptophan and methionine were not
measured. The hydrophobic amino-acid content was
calculated according to Heller (1968).

6- Sugar analysis:

The molar composition in oligosaccharides was
determined by gas chromatography  of
trimethylsilylated methyl-glycosides according to
Kamerling et al. (1975) modified by Montreuil et a/
Respectively 42 pug and 55 pg of purified lung and
serum ACE were treated and mesoinositol was used
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as internal standard. Gas chromatography was carried

out on Girdel chromatographe model 300 with:

capillary column (0.32 mm ID x 30 m) coated with
OV101 as stationnary phase. A gradient of
temperature was applied from 100 to 240°C with a
temperature rate of 2°C/min. The gaz vector was
helium.

Neuraminidase, from Clostridium Perfringens (type
X — Sigma), was used in 0.05 M citrate/phosphate
(sodium salts), 0.02 M CaCl,, pH= 5.6 buffer at |
unit per 100 pg of purified ACE and at 37°C.

RESULTS

Comparison of physicochemical and catalytic
properties between porcine lung and serum
ACEs :

2.5 mg of pulmonary ACE and 0.8 mg of serum ACE
were isolated from 300 grams of lung tissue and 2
liters of blood, respectively, and with specific
activities of 24 and 19 U-HHL/mg of protein,
respectively. The purity of the preparations was
assessed by SDS-PAGE where one single band
characterized each enzyme with an identical Mr of
172000 + 4000 and even when both enzymes were
- mixed (Figure 1) ; the absence of reduction reagent in
buffer did not modify their electrophoretic mobilities
(not shown).
Both enzymes were studied by isoelectric focusing
which showed a more acidic isoelectric point (pl) for
serum ACE (4.3 — 4.6) than for the pulmonary
enzyme (4.4 -4.8); each isoform appeared as a
multiband pattern recovering all the ACE activity
fluorimetrically measured in the gel; after
neuraminidase treatment, pl of ACE increased to 4.8
— 5.2 for both forms and still with several bands
recovering the enzymic activity (Figure 2).
Both purified enzymes exhibited very close Michaelis
kinetic properties, i.e. identical Km, Kcat, optimal pH
and optimal chloride activating concentration, for
HHL as well as for FAPGG. The only discrepancy
was a catalytic efficiency (Kcat/Km) slightly higher
for serum ACE than for the pulmonary form (+ 23%
with HHL, + 12 % with FAPGG) (Table I).

Chemical composition of the purified enzymes :

From the determination of amino-acid content,
glutamate and aspartate were the most represented
residues in both porcine ACEs and cysteine content
was low for both. As the accuracy of the method of
determination of amino-acids was near 10 %, the
most stricking differences were shown for arginine,
histidine and tyrosine which are more represented in
lung ACE, and glycine, serine and lysine which are in
greater amount in serum ACE (Table II). Heller’s
ratio was 41.3 % and 37.6 % for lung and serum
ACE,, respectively.

From the determination of sugar content, pig lung
ACE appeared less glycosylated than the serum
enzyme (8.6 % and 11.9 %, respectively). The latter
was essentially richer in both N-acetylneuraminic
acid and mannose, whereas pulmonary ACE was
substantially richer in fucose (Table III). They did not
contain any N-acetylgalactosamine. The
establishment of sugar molar ratio on the basis of
three mannoses showed that both glycoproteins had
only slightly different molar ratios for N-
acetylglucosamine and galactose; pulmonary ACE
again appeared more fucosylated and serum ACE
more sialylated.

ACE was also purified from rat lung and with
identical pl and Mr to those of pig lung ACE (not
shown); but its chemical composition showed some
discrepancies from pig lung ACE: in particular rat
ACE was slightly richer in serine, proline, isoleucine
and above all in cysteine residues, but poorer in
glutamic acid, leucine, alanine and arginine (Table II)
nevertheless Heller’s ratio was not different (41 %).
Rat ACE contained substantially less fucose and N-
acetylglucosamine but more sialic acid, whereas its
total sugar content (8.8 %) was near that of pig lung
ACE (Table IIT).

DISCUSSION

Numerous authors have studied at biochemical level
the relationships between tissular ACE, namely the
membranous form anchored in luminal plasma
membrane of the vascular endothelium, and soluble
ACE, i.e. a soluble form circulating in blood stream
(Soffer et al., 1974; Weare et al., 1982 Harris and
Wilson, 1982). When many of their results are
heterogeneous or ambiguous in term of animal origin,
neither of them has shown stricking differences
between both forms. In particular no evidence for a
difference in the length of their polypeptide chain
could be detected. Nevertheless, such a hydrophobic
segment could be very short, certainly less than 10
kDa as deduced from molecular biology data
(Soubrier er al., 1988), and then not visible by the
usual biochemical methods. New data showing a
specific secretase activity for membrane-bound ACE
are in accordance with the existance of such an
anchoring fragment (Hopper et al., 1987; Wei et al,
1991). Our data on the pig show that membranous
and soluble ACEs are very close at both
physicochemical and enzymological levels: (1) they
exhibit the same Mr on SDS-PAGE, (2) the identical
Stockes radius in size-exclusion chromatograph (not
shown) and previous studied on pulmonary ACE
(Baudin et al,1996) (3), also the same reactivity
against antiACE antibody in western-blot analysis
(personal communication), and (4) identical enzymic
parameters, i.e. Km, Kcat, optimal pH and optimal
chloride activating concentration.
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The main differences were encountered at the

chemical level. The establishment of amino-acid

composition shows that the pulmonary endothelial
form contains significantly more hydrophobic amino-
acids than the soluble form that agrees with a more
hydrophobic polypeptide which could be the
anchorage fragment. Moreover, close amino-acid
compositions were determined for human kidney
ACE (Weare et al.,1982), bovine lung ACE (Harris
and Wilson, 1982) and here for rat lung ACE. From
our study, glutamate and aspartate are the most
represented residues in all the purified ACEs, that
easily explains their acidic isoelectric point (pl); the
multiband patterns on isoelectric focusing could be
related to microheterogeneities in the primary
structure or in the glycanic chains. The difference on
pl between both porcine forms cannot be explained
by a difference in dicarboxylic acid content but more
easily in sialic acid content as we confirm by
chemical analysis, and as did Das et al. (1977) for
rabbit ACE. Curiously, ACE purified from rat lung
contains more sialic acid than pig lung ACE, whereas
their pl are very close. The role of sialic acid on pl
was specified by the treatement of pig lung and
serum ACEs by neuraminidase, which increased both
pl, remaining acidic but now identical. But
. neuraminidase treatement did not abolish the
multiband pattern on isofocalisation suggesting that
all the microheterogeneities are not related to the
variation observed on sialylation.

About the total sugar content of ACE, widely
variable values were reported, often by indirect
estimations: from 8 % for rat lung (our data) to
almost 30 % for bovine lung, human serum (Harris
and Wilson, 1982) and human kidney ACE (Weare et
al., 1982); 16 % was reported for both canine

(Conroy et al., 1978) and rabbit (Soffer et al., 1974)

lung ACEs. By direct quantification, we found a
value near 8 % for pig lung ACE and also the rat
enzyme, but pig serum ACE clearly is more
glycosylated than the pulmonary form; in a previous
work we already found 8 % of sugars for porcine
lung ACE using the same methods but with another
ACE preparation (Baudin et al., 1988). All the ACE
preparations seemed to be only N-glycosylated since
N-acetylgalactosamine could not be detected, this
osamine being specific for O-glycosylation. Our
previous studies on lectin-affinity chromatography
have confirmed N-glycosylation of pig lung ACE as
it completely bound onto concanavalin A, a lectin
recognizing polymannose features and biantennary
N-acetyllactosaminic or hybrid structures, whereas
the binding onto wheat germ agglutinin was less
effective that agrees with a relatively poor content in
heavily sialylated structures (Baudin et al., 1997a).
The establishement of sugar molar ratio could not
define a characteristic type of N-glycans. For
pulmonary ACE, the ratio of 3/3/2.5 between N-
acetylglucosamine, mannose and galactose is close to
that of biantennary N-acetyllactosaminic glycans; but

only some chains would be sialylated whereas all of
them would contain one fucose residue. These results
correlate with Hartley and Soffer’s data (1978)
characterizing a lactosaminyl glycopeptide in a
pronase digest of rabbit pulmonary ACE. For the
serum enzyme, the sugar ratio is 2.4/3/2.4 that
suggests a mixture of oligomannosidic and N-
acetyllactosaminic types, or hybrid, glycanic chains.
But we cannot discard the hypothesis that plasma
soluble ACE could be a mixture of both solubilized
membrane-bound ACE and specifically secreted
ACE. It is also possible that different cell lines could
produce ACE forms with differential glycosylations,
for example as described by Hooper and Turner
(1987) in the pig brain. Recent findings of Ripka er
al. (1993), based on enzymatic deglycosylations and
ConA affinity, indicated that ACE preparations
purified from human, rat, rabitt and guinea pig tissues
would be heterogeneous in terms of numbers of N-
glycosylated sites and types of structure of
oligosaccharides, but these authors did not compare
plasma and lung ACEs from the same species.

In conclusion, pulmonary and serum ACE seem to be
very close at both structural and enzymatic levels.
The differences shown in amino-acid content are in
agreement  with the recent findings = which
demonstrate the presence in membrane-bound ACE
of an anchorage fragment which can be cleaved by a
specific mechanism. It could be especially the case
for the ACE form facting the lumen of the
endothelium, but no result has assessed that, in vivo, a
specific hydrolytic process is physiological or
effective in every physiopathological situation. In
particular, our findings on sugar content rather agree
with a differential processing: one ACE form could
be specialized for direct secretion form the
endothelial cell to blood stream, thus without the
anchorage segment but with glycanic chains rich in
sialic acid for protection against hepatic lectins;
another form could be assigned to membrane
anchorage, thus richer in hydrophobic residues,
amino-acid and sugar. Taken together with reports of
potential N-glycosylation sites, our data indicate that
pulmonary and serum ACEs differ in terms of degree
of glycosylation, structures of bound oligosaccharide
chains and may be also sites of glycosylation since
both forms partially differ in amino-acid content.
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LEGENDS FOR FIGURES

Figure 1 :  Sodium dodecyl! sulfate-polyacrylamide gel

electrophoresis of ACE purified from
pig tissues, Lane T, molecular weight
standard ; Lane 1, pig lung ACE ; Lane
2, pig serum ACE. Lane 3, equimolar
mixture of both samples. All the
samples were submitted to dithiothreitol
reduction ; Coomassie blue staining.

Polyacrylamide gel isoelectric focusing of
purified porcine ACEs in pH range 4.0-
6.5 ; a- Lane 1: serum ACE, Lane 2: lung
ACE (Coomassie blue staining); b- Effect
of desialylation on pig lung ACE, Lane 3 :
after neuraminidase, Lane 4 : native ACE,
Lane 5 : equimolar mixture of native and
desialylated ACEs, Lane 6 : pl markers
(silver nitrate staining after Coomassie
blue staining and destaining) ; c- Specific
ACE zymography with hippuryl-histidyl-
leucine a substrate and fluorescence
revelation, Lanes 7 and 8: lung ACE,
Lanes 9 and 10: serum ACE, 8 and 10:
after neuraminidase.
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Table I — comparative kinetic properties of purified lung and serum ACEs as judged on HHL and FAPGG

HHL FAPGG
Lung Serum Lung Serum
Km (mM) 1.16 1.09 0.66 0.64
Kcat (pmol/min/mg) 245 285 400 433
Kcat/Km 211 261 606 676
Optimal pH 83 8.3 8.2 8.2
Optimal [CI'] (mM) 375 875 350 350
Table 11 — Comparative amino-acid composition between lung and serum ACEs
Pig Pig -A2/1- Rat -A3/1-
-1- -2- -3-
Lung ACE Serum ACE (%) Lung ACE (%)
Glutamic acid 135:1% 133.9 -0.8 118.4 -14.1
Aspartic acid 102.4 96.5 -6.1 113.9 +10.0
Leucine 073 88.5 -10.0 86.6 -11.4
Alanine 87.5 84.7 -3.3 74.9 -16.8
Glycine 759 98.4 +29.5 82.0 +7.4
Serine 62.3 73.8 +18.4 74.0 +15.8
Proline 61.2 572 -7.0 72.8 #15.9
* Threonine 61.0 64.6 +5.8 55.6 -9.7
Valine 59.6 62.8 +5.4 54.0 -10.4
Lysine 50.9 s eee00.7 +19.2 48.1 -5.8
Phenylalanine 47.3 43.5 -8.7 45.9 -3.0
Arginine 453 38.9 -16.6 40.1 -13.0
Histidine 42.1 32.6 -29.2 40.1 -5.0
Isoleucine 34.1 314 -7.4 41.5 +17.8
Tyrosine 31.8 253 -25.6 30.0 -6.0
1/2-Cysteine 6.3 6.7 +6.4 294 +78.6
*expressed for 1000 residues
Table I11- Comparative carbohydrate composition between lung and serum ACEs
-1- -2- -A2/1- -3- -A3/1-
, Pig Lung Pig Serum (%) Rat Lung (%)
Total sugar Content(%) 8.6 11.9 +38.4 8.8 223
N-acetylglucosamine 134.1* 3) # 161.8* +20.7 100* 2) # -34.1
Q.4)#
Mannose 129.4 (3) 212.7 (3) +64.4 166.7 (3) +22.3
Galactose 122.4 (2.5) 150.9 (2.4) 1233 133:3(2:5) +8.2
Fucose 49.4 (1) 43.6 (0.6) -13.2 26.7 (0.5) -85.0
N-acetylneuraminic acid 9.2 (0.25) 34.6 (0.6) +276.4 26.7 (0.5) 165.5

*expressed as nmoles of monosaccharide per millgram of protein
#molar ratio on the basis of 3 Mannoses
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