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Abstract 

In this paper, an intelligent control approach for an unmanned aerial vehicle (UAV) using the nonholonomic constraints, is 
presented. The UAV is a mini drone with four rotors called quadrotor. It is a nonlinear coupled and unstable system. To 
properly control this robot and mitigate the disadvantages, a fuzzy logic controller (FLC) based on Takagi-Sugeno approach 
(TKS) for the altitude, the position and the attitude tracking of a quadrotor, in the presence of external disturbances is 
proposed, taking into account the nonholonomic constraints of the model. The desired roll and pitch angles are deduced 
from nonholonomic constraints. This adopted control strategy is summarized in the control of two subsystems. The first 
relates to the orientation (attitude) control, taking into account the position control along (x; y) axes. The second is that of 
the altitude control along z axis. For the concretization of this work, the matlab/simulink environment is used and the 
obtained results prove the efficiency of this fuzzy logic control strategy. 
Key-words:  Fuzzy Logic Control; Nonholonomic Constraints; Quadrotor; Trajectory tracking. 
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1. Introduction  

The UAV type quadrotor has become more commonly 
used for many applications e.g. research, surveillance and 
reconnaissance in specific regions or in dangerous regions 
which are inaccessible or hard to reach for other types of 
vehicles [1]. Moreover, the field of UAV involves many 
engineering challenges in the areas of electrical, mechanical 
and control engineering. 

In practical applications, the position in space of the 
UAVs is generally controlled by an operator through a 
remote-control system, while the attitude can be 
automatically stabilized via an onboard controller. The 
attitude controller is an important feature since it allows 
the vehicle to maintain a desired orientation and, hence, 
prevents the vehicle from flipping over and crashing when 
the pilot performs the desired maneuvers [2]. A quadrotor 
is a dynamic vehicle with four input forces, six output 
coordinators, highly coupled and unstable dynamics [3, 4]. 

Research into the quadrotor control problem has led to 
many potential solutions, several of which have been 
implemented successfully on hardware test beds. For 
example, in order to stabilize the quadrotor, authors in [5] 
propose a control law based on the choice of a stabilizing 
Lyapunov function ensuring the desired tracking trajectories 
along (X, Z) axes and roll angle. For the same problem, of 
proportional integral derivative (PID) control is used in [6]. 
However, they do not take into account nonholonomic 
constraints. Another popular nonlinear control techniques, 
as sliding mode and backstepping procedure, have used by 
[7] for the stabilization problem; the authors do not take 
into account frictions due to the aerodynamic torques nor 
drag forces or nonholonomic constraints. In [8], authors 
propose a control algorithm based on sliding mode using 
backstepping approach allowed the tracking of the various 
desired trajectories expressed in term of the mass center 
coordinates along (X,Y,Z) axes and yaw angle. A feedback 
linearization approach was used by [9]. Additionally, 
another controller design based on backstepping approach 
is used by [10]. Furthermore, the control approach 
proposed by [11] is based on the idea that the UAV model is 
constituted of two subsystems, then the attitude control is 
proposed using an integral sliding mode control, and a 
simple PID is used for the positioning control (motion in the 
x-y plane). Moreover, in [12], authors propose a control law 
based on linear algebra theory. In [13] a nonlinear 
decentralized model predictive control was proposed to 
control a formation of unmanned vehicles, the author’s 
takes into account saturation constraints for the control 
actions, together with collision avoidance constraints. 

In this paper, a particular interest is attributed 
principally to the quadrotor robot modeling taking into 
account various parameters which affect the dynamics of a 
flying structure such as frictions due to the aerodynamic 
torques, drag forces along (X, Y, Z) axes and gyroscopic 
effects which are identified in [4]. Thus, all these 
parameters taking part in the installation of a new 
configuration of the model and in the development of a 
new state representation of the system, much more 

complete, allow the synthesis of adequate control laws. 
Then, a new design of a fuzzy logic controller based on 
Takagi-Sugeno approach is presented, for ensuring the 
trajectory tracking along (X, Y, Z) axes and roll, pitch and 
yaw angles, while the desired roll and pitch angles are 
deduced from nonholonomic constraints.  

2. Notation 

The notation used throughout the paper is stated below. 

Nomenclatures: 
m total mass of the quadrotor 
J inertia matrix 
l distance between the mass centre of 

the quadrotor and the rotation axes 
of propeller 

  disturbances applied to the quadrotor 
Kfa aerodynamics frictions factors 
Kfd translation drag coefficients 
Jr total rotational moment of inertia 

around the propeller axis 
Cp lift coefficient 
Cd drag factor of rotation 
Greek Symbols: 
φ,θ,ψ pitch, roll, yaw angles 
  angular velocity 
  angular speed of the rotor 

 

3. Quadrotor dynamic modeling 

Quadrotor has six DOF and four actuators placed in a 
cross configuration. Using a symmetrical design of the 
quadrotor allows for a centralization of the control systems 
and the payload. Each one of the four rotors is connected 
to a propeller and all the propellers’ axes of rotation are 
parallel to each other.  Also, all the propellers have fixed-
pitch blades and their airflow downwards to get an upward 
lift. The left and the right propellers rotate clock wise, while 
the front and the rear one rotate counter-clockwise. Using 
an opposite pair’s directions will balance the quadrotor and 
remove the need for a tail rotor.  Consequently, the 
movements of the quadrotor are directly related to the 
propellers velocities. 

 
Fig.1. A quadrotor configuration [4], [5] 
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The rotational transformation matrix R between the 
earth frame and the body frame (see Fig. 1) is given by the 
resultant transformation matrix of x, y and z axes [14]. 

 
C C C S S S C C S C S S

R S C S S S C C S S C S C
S C S C C

           
           

    

  
    
  

  (1) 

 
Where S and C represent the Sinus and Co-sinus 

functions, respectively. 
Using the Newton-Euler mechanics laws, the quadrotor 
motion equations can be written as follows: 
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Where J = diag(Ix,Iy,Iz) 3 3R . (  denote the vector 

cross-product).  
( )   is a skew-symmetric matrix, which is given as 
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The quadrotor dynamic is given by the following equations: 
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Where  Kfa = diag(Kfax,Kfay,Kfaz), Kfd = diag(Kfdx,Kfdy,Kfdz), ux  

and uy are two virtual control inputs 
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The system control inputs U1, U2, U3 and U4 are 

represents altitude, pitch, roll and yaw controls, 
respectively. Are written according to the angular velocities 
of the four rotors as follows: 
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Where 1 2 3 4( )      

 is the total gyroscopic 

torques affected the quadrotor. 
From Eq.5, it is easy to show that: 
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  (7) 

3.1 Rotor dynamics 

A standard DC motor is usually a 2nd order system. It is 
possible to model the dynamics of a DC motor system as a 
first order system [15]. In this paper, the transfer function 
Eq.8 of the dynamics of a DC motor system is used: 

 

( )
1

kG s
s


  

 (8) 

 
where k and τ  are  the  gain and the time constant of the 

motor,  respectively. 

3.2 State space representation 

The model Eq.4 can be written in the state-space as: 
 

( ) ( )X f X g X U   
  (9) 

 
where δ represent the perturbation and X the state 

vector. 

The quadrotor robot is six degrees of freedom system 
defined with twelve states. The following state and control 
vectors are adopted: 
 

[ , , , , , , , , , , , ]TX x x y y z z             (10) 
 
U  is the input vector such as: 
 

1 2 3 4[ ]TU U  U  U  U   (11) 
 

Where Ui  is the motor control input, i =1, 2, 3, 4: motor 
number.  
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From Eqs. (9)-(12) the following state representation is 
obtained: 
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where:  

a1= (Iy-Iz)/Ix a2= -Kfax / Ix a3= -Jr / Ix a4= (Iz-Ix)/Iy 
a5= -Kfay / Iy a6= Jr / Iy a7= (Ix-Iy)/Iz a8= -Kfaz / Iz 
a9= -Kftx / m a10= -Kfty / m a11= -Kftz / m b1= d/ Ix 
b2= d / Iy b3= 1 / Iz   

4. Design of the fuzzy controller 

The main objective is to design control laws in order to 
stabilize the position, altitude and attitude of the quadrotor 
and tracking the desired trajectory by using a FLC [16],[17]. 

From nonholonomic constraints developed in Eq.7, the 
roll ( ) and pitch ( ) angles depend not only on the yaw 
angle ( ) but also on the movements along (x, y) axes and 
their dynamics. However the adopted control strategy is 
summarized in the control of two subsystems: the first 
relates to the orientation (attitude) control, taking into 
account the position control along (x, y) axes while the 
second is that of the altitude control along z axis as shown in 
the synoptic scheme below (see Fig. 2). 
In Fig. 2 the controller that will be implemented consists of 
six FLCs, three attitude controls (FLCroll, FLCpitch, FLCyaw) and 
three position controllers (FLCx, FLCy, FLCz) who are in the 
form of zero order Sugeno fuzzy inference system Eq.14 
[18]. 
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 (14) 

The controller inputs are the state variables errors. The 
error is calculated as the difference between the desired 
state and the current state (Xd – X).  
The linguistic levels of the inputs signal  error (e) are 
assigned as : (N) negative, (Z) zero, and (P) positive, where 
the range of the error (e) input is  from -100 to +100 and 
the linguistic levels of the derivative error (de) input signal 
are the same as the error  (e)  inputs but  the  range value is 
from  -100  to +100,  and they are presented in Fig. 4. The 
output of the FLC is the control action U. The output 
membership functions are fuzzy singletons CN = −1, CZ = 0 
and CP = 1. 

μN(e) = Trapezoidal{4ᵡ(-25, -25, -3, 0)} 
μZ(e) = Triangular{4ᵡ(-3, 0, 3)} 
μP(e) = Trapezoidal{4ᵡ(0, 3, 25, 25)} 
μN(de) = Trapezoidal{4ᵡ(-25, -25, -3, 0)} 
μZ(de) = Triangular{4ᵡ(-3, 0, 3)} 
μP(de) = Trapezoidal{4ᵡ(0, 3, 25, 25)} 
μN(U) = -1 μZ(U) = 0 μP(U) = +1 

  
The rule set of FLC containing nine rules which 

governing the input-output relationship of the FLC and this 
adopts the Sugeno-style inference engine [18]. The rules set 
whose forms are established as follows (see Table 1).  

Rule i:   If e is µk,1 and de is µk,2 Then u is Ci 

where µk,1 and µk,2 are the fuzzy set associated with 
each input variable and Ci is a constant associated with 
output variable with i=1,2,3, when the output of each rule is 
constant. 

 

 

Table 1. Fuzzy rule set 

   e  
  Z N P 
 Z CN CN CZ 

de N CN CZ CP 
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 P CZ CP CP  

 
Fig.2. Synoptic scheme of the proposed control strategy

 
Fig.3. Structure of individual fuzzy controller 

 

 

Fig.4. Membership functions for inputs variable (a) e, (b) de 

 

These input variables are multiplied by the gains Ge and 
Gde, respectively. The output is the control action U and the 
corresponding gain is Gu. The tuning of these gains have 
been done by trial and error way. The implication and 
aggregation methods are fixed and the weighted average 
method to realize the defuzzification procedure is used. 

5. Simulation Results 

In this section, we will test the effectiveness of the 
proposed control framework. Proposed control applied to 
the above Quadrotor is simulated on a PC using 
MatLab/simulink environment (version 8.6.0.267246).  

The obtained controller gains are: 

Ge1=30   Gde1=13   GU1=15 ; Ge2=1   Gde2=1   GU2=2 ; Ge3=1   

Gde3=1   GU3=2 ; Ge4=1     Gde4=1     GU4=3 ;   Gex=1    Gdex=1    
GUx=4 ; Gey=1   Gdey=1   GUy=4 

In a first simulation, a state initial condition of the system is 
assumed as: x=y=z = 0 and ϕ = θ = ψ = 0. 

The desired end state is represented by xd = 0.5m, yd = 0.5m 
zd = 3m and ψ = 160º. In this test the system was not 
subject to any disturbance. The following results are 
obtained, with the term IC representing the initial 
conditions: 

 
Fig.5. Trajectory tracking of Position and Euler angles with 

IC=0 
 

Another desired trajectory is taken now with:  xd= 0.2 sin 
((t+ )/2),  yd= 0.2 sin ((t+ )/2+1),  zd= t ,  ψ = 60°. In this 
test the system is not subject to any disturbance and the 
following results are obtained: 
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Fig. 6. Position and Euler angles tracking with IC=0 

 

Fig.7. Positions and Orientations error tracking with IC=0 
 

Fig. 8. Control inputs tracking with IC=0. 
 

 

Fig. 9. Quadrotor displacement in 3D with IC=0 
 

The considered initial conditions are  X(0) = IC = [5°, 0, 7°, 0, 
0, 0, 0.5, 0.2, 1, 0, 2, 0]. 

The desired trajectory is : xd = -sin (π.t/30 + π/2) ;  yd = -3 sin 
(π.t/30 +π) ; zd = -3 sin (π.t/30 +π/2) +5 ;   ψ = 90°. 



RSSI, Vol. 07, No. 02, December 2018, 51-59 

57 
 

 
Fig.10. Position and Euler angles tracking with 

IC = [5°,0,7°,0,0,0,0.5,0.2,1,0,2,0]. 

 

Fig.11. Positions and orientations error tracking with  
IC = [5°,0,7°,0,0,0,0.5,0.2,1,0,2,0]. 

Fig.12. Control inputs with   
IC = [5°,0,7°,0,0,0,0.5,0.2,1,0,2,0]. 

 

From Figs. 5, 6 and 10 we can see that x, y, z and ψ (yaw 
Angle) achieve the desired value in a relatively short period 
of time, ϕ (roll angle) and θ (pitch angle) are more stable 
(equal 0) with the short period of time. Errors and control 
inputs are depicted in Figs. 7, 11 and Figs. 8 and 12, 
respectively for different initial conditions.   

In a second simulation the system Eq.9 is subject to 
disturbance. To illustrate the disturbance rejection 
performance, the external disturbance is assumed to be δ = 
exp (-(t-ci)2 / (2.bi

2)) with bi = 1.0 and ci = 30 for t = 60s. 

 
Fig.13. Position and Euler angles tracking with IC = 
[5°,0,7°,0,0,0,0.5,0.2,1,0,2,0] and disturbance. 
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Fig. 14. Positions and orientations error tracking with  

IC = [5°,0,7°,0,0,0,0.5,0.2,1,0,2,0] and disturbance. 

 
Fig.15. Control  inputs with IC = 

[5°,0,7°,0,0,0,0.5,0.2,1,0,2,0] and disturbance. 
 

 
(a) 

 

 
(b) 

Fig.16. Quadrotor displacement in 3D with  
IC = [5°,0,7°,0,0,0,0.5,0.2,1,0,2,0] 

(a) with disturbance (b) without disturbance. 

 
From Fig. 14 we can see x, y, z and ψ achieve the 

desired value in a relatively short period of time despite the 
presence of disturbances. ϕ and θ would be more stable 
(equal to zero) in a short period of time despite the 
presence of disturbances.  Errors and control inputs are 
depicted in Figs. 15 and 16, respectively. As represented in 
Fig. 17 the performances without and under the occurrence 
external disturbance are satisfactory. So the obtained 
results of simulation works show indeed that the proposed 
controller is really robust. 

The values of the parameters used in simulation can be 
found in [4, 8] and can be seen in Table 2. 

Table 2. Parameters used in simulation 

m = 400 [g] 
l = 20.5 [cm] 
g = 9.81 [m·s−2] 
a1 = -1 
a2 = -0.1454 
a3 = -0.0074 
a4 = 1 
a5 = -0.1454 
a6 = 0.0074 
a7 = -1.3061×10-4 
a8 = -0.0830 
a9 = -0.0011 
a10 = -0.001 
a11 = -0.0013 
b1= 65.3117 
b2= 65.2946 
b3= 130.6063 
Cp= 2.9842×10-5 [N/rad/s] 
Cd= 3.2320×10-7 [N.m/rad/s] 
Jr = 2.8385×10-5 [N.m/rad/s2] 
Kfa= diag(5.5670; 5.5670; 6.3540)×10-4 [N/rad/s] 
Kfd= diag(0.032; 0.032; 0.048) [N/m/s] 
J= diag(3.8278; 3.8278; 7.1345)×10-3 [N.m/rad/s2] 
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6. Conclusion 

An intelligent approach using a fuzzy logic controller 
based on Takagi-Sugeno property to solve the stability and 
trajectory tracking problems of a nonlinear model is 
proposed. The simulation results verify that the dynamics 
model of the quadrotor is correct and the control system is 
feasible and valid. Moreover, the designed fuzzy logic 
control system is capable to reach the desired hovering 
point quickly. Also, simulation results confirmed the ability 
of the designed control scheme to ensure stability and 
tracking trajectory of the quadrotor model, in the presence 
of both nonholonomic constraints and external 
disturbances. 
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