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Abstract 

 
Feature extraction is a key component of a Monocular Simultaneous Localization and Mapping (Monocular SLAM) 

system, which permits to extract features that can be reliably tracked over frames. This paper proposes a novel approach 

for Monocular SLAM that uses the information on the camera displacement and image saliency to adequately extract 

stable features, which will be prompt to produce sufficient parallax that is essential to ensure precise localization and 

mapping. The results obtained from real data show that the proposed method outclasses the state of the art method 

both in precision and computational speed. 

 
Key-words :   Monocular SLAM ; EKF-SLAM ; FAST Detector ; Visual Saliency.  
 
Résumé 

 
L’extraction des amers est un élément clé d’un système de localisation et de cartographie monoculaire simultanée 

(Monocular SLAM), qui permet d’extraire des points d’intérêts qui peuvent être suivis de manière fiable au travers des 

images. Cet article propose une approche originale pour le SLAM Monoculaire qui utilise l’information sur le 

déplacement de la caméra et la saillance de l’image pour extraire adéquatement des points d’intérêts stables, qui seront 

plus prompte à produire suffisamment de parallaxe, élément essentiel pour assurer précisément la localisation et la 

cartographie. Les résultats obtenus à partir de données réelles montrent que la méthode proposée surpasse la méthode 

de l’état de l’art en termes de précision et de vitesse de calcul.   

 
Mots-clés :   SLAM Monoculaire ; EKF-SLAM ; Détecteur FAST ; Saillance Visuelle 
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1. Introduction 

Simultaneous Localization and Mapping (SLAM) is 

one of the key problems in robotics. It is a typical 

chicken and egg problem; where to achieve accurate 

localization, a precise map is necessary, and to achieve 

precise mapping, an accurate knowledge of the robot 

locations is needed. To solve this problem, an 

Extended Kalman filter can be used to jointly estimate 

the robot and landmarks (map) locations by exploiting 

the information provided by the measurements at 

different locations. 

Researches involving using a single camera as the 

only sensor to perform SLAM, known as Monocular 

SLAM, gained a lot of intention over the past fifteen 

years because of the advantages of the cameras over 

other sensors, like laser range finders, in terms of price 

and power consumption. 

In his paper, Davison [1] presented the first 

implementation of a SLAM system that used a camera 

as the only sensor. This work opened the way to a 

number of works on Monocular SLAM. Notably, the 

work proposed by Eade and Drummond [2], which 

used a graph of local frames to avoid map 

inconsistency and the work of Civera et al. [3] that 

integrated both the RANSAC algorithm for outlier’s 

rejection and the inverse depth parameterization [4]. 

Other approaches that consider the Kalman filter 

framework can be found on literature like the system 

proposed by Lee [5], which combined a particle filter 

and an unscented Kalman filter. 

In the context of camera based SLAM, feature 

extraction plays a key role in the ability of the system 

to extract robust features and track them during the 

exploration of the environment. Frintrop et al. [6] 

proposed a strategy inspired by the human visual 

intention system [7] to extract a sparse set of features. 

This strategy was later used in combination with 

learned objects database by Kuan-Ting Yu et al. [8] to 

select key features. 

In this paper, we propose a method where features 

are not uniformly distributed in the image like in the 

work of Civera [3], but where they are distributed 

according to the camera displacement and the salient 

regions in the image, in order to extract more robust 

features and augment the performances of the system. 

This paper is organized as follows: first, the 

proposed method is described, and then the EKF 

Monocular SLAM based on inverse depth is reviewed. 

After that, the results are presented and a comparison 

between the proposed method and the state-of-the-

art monocular SLAM algorithm of Civera et al. [3], is 

done. The conclusions are given in the last section. 

2. Method description 

The proposed method aims to determine, according to 

camera displacement and image saliency zones,  parts 

of the image that are more suitable to initialize new 

features. This is done by dividing the input image into 8 

zones as shown in Fig. 1. The reason why using 8 zones 

is to compromise between the accuracy “induced by 

the augmentation of their number” and the 

computational cost inherent to this augmentation. 

 

Fig. 1. Image division into 8 zones 

To each zone (𝑧𝑖   ;  𝑖 =  1, … ,8) is attributed a 

coefficient 𝑐𝑖  which  is computed according to two 

other coefficients 𝑚𝑖 and 𝑠𝑖 . The coefficients 𝑚𝑖 are 

calculated based on camera motion to provide a 

motion based grid. The coefficients 𝑠𝑖  are calculated 

based on saliency of the corresponding zone to provide 

a saliency based grid. 
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Fig. 2. Grid coefficients applied to every type of camera 

displacement 

 

a. Motion Based Grid 

This approach permits to take advantage of the 

information on the type of motion. To give more 

importance to the zones that are more likely to 

provide useful features. Since the benchmarking of the 

proposed method was done using the RAWSEEDS 

dataset [9], only three types of displacement were 

considered: straight, turning left and turning right. To 

each type of these displacements is associated a 

specific grid as presented in Fig. 2. 

These coefficients were attributed based on the 

following considerations: in the case of a straight 

displacement, features that are located on image ends 

are more suitable than features located on image 

center because they will produce more parallax that is 

essential for good performance. For a camera turning 

left, features located on the right half of the image will 

be rapidly unusable by the SLAM system. That’s makes 

them undesirable for initialization. The right turning 

case can be conversely considered.  

b. Saliency Based Grid 

In this approach a saliency map is used to compute the 

coefficients 𝑠𝑖 . The saliency map is generated using 

VOCUS [10], a method inspired by human intention 

system that uses variations on intensity, orientation 

and color to determine regions of interest (salient 

regions) in the image. The saliency map produced is a 

gray level image, where the brightest regions 

represent the most salient ones. The 𝑠𝑖  coefficients are 

the mean value of the corresponding zone 𝑧𝑖  on the 

saliency map. 

𝑠𝑖 =
1

𝐻. 𝑊
∑ ∑ 𝑆(𝑖, 𝑗)

𝑊

𝑗=𝑗0

𝐻

𝑖=𝑖0

                   (1) 

Here H represents the zone height and W represents 

the zone width. 𝑆(𝑖, 𝑗) is the value of the saliency map 

on the location specified by 𝑖 and 𝑗. (𝑖0, 𝑗0) are the 

location of the up left zone corner. Fig. 3 shows an 

example of a saliency map. 

   
Fig. 3. Saliency map of the input image 

c. Fusing Grids 

To compute the 𝑐𝑖  coefficients the two maps are fused 

by multiplying each corresponding 𝑚𝑖  and 𝑠𝑖  

coefficients. 

𝑐𝑖 = 𝜂. 𝑚𝑖 . 𝑠𝑖    /   𝑖 =  1, … , 8                    (2) 

Where 𝜂 is a normalizer which ensures that the sum of 

the coefficients 𝑐𝑖  is equal to one. This result is used to 

determine how many features, from the overall 

number of features that have to be initialized, should 

be extracted from each zone. 
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𝑛𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝑁. 𝑐𝑖)                            (3) 

Where 𝑛𝑖  is the number of extracted features in 𝑧𝑖  

and 𝑁 the total number of extracted features. 

3. Monocular ekf-slam based on inverse depth 

In this section the inverse depth based monocular 

SLAM [4] (Mono-SLAM) is reviewed. 

a. Camera Motion Model 

The state vector is defined as follows: 

𝑋𝑘|𝑘 = [𝑥𝑘|𝑘
𝑐 , 𝐿𝑘|𝑘]𝑇                            (4) 

Where the camera state vector is 𝑥𝑘|𝑘
𝑐 : 

𝑥𝑘|𝑘
𝑐 = [𝑟𝑐𝑤 , 𝑞𝑐𝑤 , 𝑣𝑐𝑤 , 𝑤𝑐𝑤]𝑇                    (5) 

𝑟𝑐𝑤 is the camera optical center position and 𝑞𝑐𝑤 

represents the camera orientation in the world 

reference frame. 𝑣𝑐𝑤 and 𝑤𝑐𝑤  are the camera linear 

and angular velocities respectively. The camera motion 

model 𝑓𝑣() is: 

𝑥𝑘+1|𝑘
𝑐 =  𝑓𝑣(𝑥𝑘|𝑘

𝑐 )                              (6) 

And 

𝑥𝑘+1|𝑘
𝑐 =  [

𝑟𝑐𝑤 + (𝑣𝑐𝑤 + 𝑉𝑐𝑤). Δ𝑡
𝑞𝑐𝑤 × 𝑞((𝑤𝑐𝑤 +  𝑊𝑐𝑤). ∆𝑡)

𝑣𝑐𝑤 + 𝑉𝑐𝑤

𝑤𝑐𝑤 + 𝑊𝑐𝑤

]           (7) 

Where 𝑉𝑐𝑤 and 𝑊𝑐𝑤 are zero mean Gaussian 

distributions representing constant linear and angular 

velocities 

b. Inverse Depth Parameterization  

The feature state 𝑙𝑖 is a 6D vector: 

𝑙𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖 𝜌𝑖 𝜃𝑖 𝜑𝑖]𝑇                  (8) 

where [𝑥𝑖 𝑦𝑖 𝑧𝑖] represents the camera optical 

center position from which the interest point was first 

detected, 𝜌𝑖 =
1

𝑑𝑖
 represents the inverse depth of the 

interest point, and 𝜃𝑖 , 𝜑𝑖  represent its azimuth and 

elevation (encoded in the world reference frame) 

which permits to define the directional 

vector 𝑚(𝜃𝑖 , 𝜑𝑖) : 

𝑚(𝜃𝑖 , 𝜑𝑖)[cos(𝜑𝑖) sin(𝜃𝑖) −sin(𝜑𝑖) cos(𝜑𝑖) cos(𝜃𝑖)]𝑇   

(9) 

 

c. Measurement Model 

In this paper the pinhole model is used. Thereby, the 

image coordinates of a projected feature 𝑙𝑖 on the 

image plane are: 

𝑦𝑖
ℎ =  [

𝑢𝑖

𝑣𝑖
] = [

𝑢0 − 𝑓
ℎ𝑥

𝑐

ℎ𝑧
𝑐 

𝑣0 − 𝑓
ℎ𝑦

𝑐

ℎ𝑧
𝑐

]                      (10) 

Where 𝑢0, 𝑣0 represent the camera’s principal points. 

𝑓 is the focal length expressed in pixel units. ℎ𝑥
𝑐 , ℎ𝑦

𝑐 , ℎ𝑧
𝑐 

are the coordinates of the feature 𝑙𝑖 expressed in 

camera frame. The transformation from the world 

reference frame to the camera frame is expressed by 

the following relation: 

[

ℎ𝑥

ℎ𝑦

ℎ𝑧

] = 𝑅𝑐𝑤 ([

𝑥𝑖

𝑦𝑖

𝑧𝑖

] +
1

𝜌𝑖
𝑚(𝜃𝑖 , 𝜑𝑖) − 𝑟𝑐𝑤)         (11) 

Here 𝑅𝑐𝑤 represents the rotation from the world 

reference frame to the camera frame. 

The camera distortion model used is: 

[
𝑢𝑑

𝑣𝑑
] = [

𝑢 − 𝑢0

1 + 𝐾1𝑟2 + 𝐾2𝑟4
+ 𝑢0

𝑣 − 𝑣0

1 + 𝐾1𝑟2 + 𝐾2𝑟4
+ 𝑣0

]                  (12) 

Where 𝐾1 and 𝐾2 are the distortion coefficients. 

d. Kalman Filter Framework  

The motion model used for the prediction step of the 

Kalman filter is: 

𝑋𝑘+1|𝑘 =  [
𝑓𝑣(𝑥𝑘|𝑘

𝑐 )

𝐿𝑖

]                              (13) 

With the predicted covariance matrix: 

𝑃𝑘+1|𝑘 = 𝐹𝑃𝑘|𝑘𝐹𝑇 + 𝐺𝑃𝑘|𝑘𝐺𝑇               (14) 

Where 𝐹 and 𝐺 represent the Jacobian matrices of the 

motion model with respect to (w.r.t.) the state vector 

𝑋 and the Gaussian distribution 𝑛 = [ 𝑉𝑐𝑤

𝑊𝑐𝑤] 

respectively. 

The update of the filter is done according to the 

following equations: 

𝑥𝑘+1|𝑘+1 = 𝑥𝑘+1|𝑘 + 𝐾(𝑍ℎ − 𝑌ℎ)            (15) 
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And  

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 − 𝐾𝑆𝐾𝑇                    (16) 

With  

𝑆 = 𝐻𝑃𝑘+1|𝑘𝐻𝑇 + 𝑅                         (17) 

𝐾 =  𝑃𝑘+1|𝑘𝐻𝑇𝑆−1                           (18) 

Where 𝐻 is the Jacobian matrix of the measurement 

model w.r.t. the state vector. 𝑅 is the covariance 

matrix of the measurement process noise. 

4. Results 

The proposed method was tested on MATLAB, using 

the RAWSEEDS dataset (Bicocca-2009-02-25b), that 

provides multiple sensor streams from which only the 

monocular sequence was used for the SLAM. This 

sequence was recorded from a traveling robot around 

the Università di Milano-Bicocca, in Milan (Italy). What 

makes this dataset challenging is that it contains low 

textured parts (corridor) and dynamic elements 

(people). The detector used in the experiments is the 

FAST detector [11]. The results presented in this 

section were obtained using the benchmarking 

solution provided in free download on the RAWSEEDS 

web page. 

a. The state-of-the art  Method  

Fig. 4 shows the trajectory estimated using the 

approach of Civera et al [3] for the monocular SLAM, 

and the ground truth. 

 

Fig. 4. Estimated trajectory using the state of the art method 

(blue) and ground truth (red) 

 

 

The absolute trajectory error (ATE) is presented in Fig. 

5. 

 

Fig. 5. The absolute trajectory error (the mean is showed in the 

center of the figure) 

From these figures, we can see that the state-of-the-

art method provides a relatively precise estimation of 

the robot trajectory, while consuming an important 

time for the execution (9206.247𝑠 overally).   

b. The Saliency Based Method 

In this experiment, only the saliency information was 

used for the monocular SLAM, and the system failed to 

continue the estimation beyond 10 meters. The 

trajectory estimation is presented with the ground 

truth on the following figure. 

 

Fig. 6. Estimated trajectory using only the saliency information 

method (blue) and ground truth (red) 
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The execution time for every iteration is showed in 

Fig.8. 

 

Fig. 7. Evolution of the execution time during the experiment 

Here, the results show a bad estimation of the 

trajectory, because during navigation, features located 

only on salient regions can exhibit insufficient parallax 

which is not suitable for good localization and 

mapping. 

c. The Proposed Method   

The method proposed in this work uses the 

information of both the trajectory and the saliency and 

exhibits the following results. 

 

Fig.8. Estimated trajectory using the proposed method (blue) and 

ground truth (red) 

 

 

Fig. 9. Occurrence frequency of the different values of the ATE 

(the mean is showed in the center of the figure) 

Fig. 10 shows the execution time for both the state-of-

the-art and the proposed methods. 

 

Fig.10. Evolution of the execution time for both the state of the art 

(in blue) and the proposed methods (in red) 

From these figures we can see that the strategy based 

on using both the trajectory and saliency information 

gives the best performances in terms of precision and 

execution time. Taking advantage from this 

information, the proposed strategy permits to use less 

features for the SLAM (50 features on average) than 

the state of the art method (110 features on average), 

and thereby induces a decrease in execution time. 

Fig.11 shows the evolution of the number of features 

used by the two methods. It also permits to exploit the 

features in a more useful way because they will be 

located in zones (regions) that are more suitable for 

the localization and mapping, and inducing by this 

mean a gain in precision in comparison with the state-

of-the-art and saliency based methods. 
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Fig.11. Evolution of the number of features handled by the EKF for 

both methods 

5. Conclusion 

In this work, a practical method based on the 

extended Kalman filter (EKF) was presented and tested 

using real data from a navigating robot on a dynamic 

environment. The proposed strategy uses the camera 

displacement and the image saliency information to 

determine the number of features to be initialized in 

every image zone. Which induces a reduction of the 

number of features handled by the EKF (by 

approximately 55%) and by this mean a reduction of 

the computational time, and permits to reach a smaller 

absolute error on the trajectory than the state of the 

art method. This permits to say that the method 

presented in this paper outclasses the state of the art 

method in terms of precision and execution speed. 

Improvements for the presented method can be 

studied. Notably the tracking of the salient regions 

over the frames to reduce the computational cost 

inherent to their generation. Other detectors can be 

considered (like the SURF detector) to test their impact 

on the SLAM performances. 
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