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A Simulation comparison of estimators of tail index

under right random censoring
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Abstract: Fabian et al. (2009) proposed a new estimator of extreme value index
for heavy-tailed distributions, namely t-Hill estimator. We are interested in this
paper on the extreme value theory under right random censoring. We adapted this
estimator for this kind of data (censored data). A Simulation comparison of Hill
estimator in the case of censoring and our estimator (adapted t-Hill estimator)
show the robustness of the last one.
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Résume : Fabian et al. (2009) ont proposé un nouvel estimateur de I'indice des
valeurs extrémes pour les distributions a queue lourde, estimateur de t-Hill. Nous
sommes intéresses dans cet article sur la théorie des valeurs extrémes sous censure
aléatoire droite. Nous avons adapté cet estimateur pour ce type de données
(données censurées). Une comparaison par simulation de I'estimateur de Hill dans
le cas de la censure et de notre estimateur (estimateur t-Hill adapté) montre la
robustesse du dernier estimateur.

Mots-clés: estimateur t-Hill; censure aléatoire; simulation; robustesse.
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1- Introduction :

The extreme value theory is used to evaluate rare events. The applications
of this theory is mainly based on the estimation of a parameter which gives the
shape of the tail distribution; this parameter is called extreme value index. In the
literature of the extreme values exists several estimators of this index, the most
used are the estimator of Pikands Pickands et al. (1975), the estimator of moment
Dekkers et al. (1989); this two estimators is for any values of the tail index, and
the last one is the estimator of Hill Hill (1975), it is for positive tail index. We are
interested in our works in the recent version of Hill estimator. The estimator of
Hill Hill (1975) is the most common estimator for positive tail index.

It is defined by
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Consistency of this estimator was established by Mason (1982) and Deheuvels et
al (1988). The asymptotic normality of Hill estimator was showed in de Haan et
al. (2006).

A disadvantage of Hill estimator based on the maximum likelihood, it is not
robust, and then it is sensitive to some observations.

Fabian et al. (2009) found a solution to this problem in the theory of extreme
values, by construction of a robust estimator called t-Hill, it is defined by
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t-Hill estimator is based on the harmonic mean, therefore it is robust (see Stehlik et
al. (2012)), so it can give more realistic values for a large numbers of extreme
values. Beran et al. (2013) proved the asymptotic normality of this estimator.

In the case of censored data, the estimation of the extreme value index approached

recently by Beirlant et al. (2007) and Einmahl et al. (2008). Our aim in this paper is
to estimate the tail index of right censured data. In this case the variable of interest

249



X is not completely observed, but it censured by another random variable ¥
independent of X.

So we are only observed (Z; &,) such as
Z,=min(X,Y)and 6, =X, <¥},1=<i <n

The random variables X, ¥ and Z have respectively the distributions F, G, and H,
with extreme values indexes ¥1, ¥2, and y respectively.

The goal is to estimate y1 index of F; several estimators of this index are

introduced, they built by the same way, they based on usual estimators (Hill,
moment, Pikands, ...):

e Yz

£ 1
EE_J;zl On—ji1

So the estimator for censored data is given as a ratio of two quantities; the
numerator which estimate the index extreme values for the variable Z not X, it

divided by proportion of the uncensored data for estimated y1 index of F. Einmahl
et al. (2008) proved the consistency and the asymptotic normality of 1.

Our goal in this paper is organized as follows. In Section 2 the existing estimator
is presented and we define the proposed estimator. In Section 3 we illustrate the
robustness of our estimator by simulation comparison.

2—Estimators of tail index under right random censoring:_

Let X,,X,, ..., X, arealisation of random variable X (interest variable) with
distribution function F and end-points x (xz; = sup{x, F(x) < 1}), censured by
anathor random variable ¥ (independent of X) with distribution function G and
end-points x. (x. = sup{x,G(x) < 1}).So X not be observed, the sample

(Z;; d,) is only observed,

1 siX, <Y,
4= 1< i € nZ, = min(X,Y,) and
0 siX,>Y,

d; is an indicator variable, it determines if X has been censored or not. The

estimation of the extreme value index under right random censoring is our aim
Einmahl et al. (2008) suggested the folowing cases
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casel:3 =0, ., =0
case 2: 3 <0,y < 0,xp =x;
case3: y; <0, <0,x; =x,= +@0

In our work, we consider the case 1, where the two distribution F and G are in the

Pareto domain of attraction. In this case ¥ = —:f}f :
i z

Beirlant et al. (2007) and Einmahl et al. (2008) proposed an estimator of tail index
by adaptation of the classical estimators to censoring. Adapted Hill estimator is
one of this proposed estimators when the tail index is positive, it defined by
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Where 7" i the classical Hill estimator based in the sample Z:
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The asymptotic normality of adapted Hill estimator established recently by
Brahimi et al. (2014), to approximate this estimator, they used the empirical
process theory.

We used the approach defined in Beirlant et al. (2007) and Einmahl et al. (2008)
to the so-called t-Hill estimator: it based in dividing the classical t-Hill estimator
for Z by the proportion of the uncensored data. Our proposed estimator is:
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Lastly, we assess the performance of these estimators by a simulation study.

3- Simulation study

In this section, we presented a simulation study for various sample sizes, to
compare the performance of the adapted Hill and adapted t-Hill estimators
for illustrate the robustness of our estimator. The following steps are
proceed to derive the performance of estimators above.

S1: Generate 100 samples of size n (300, 600, 1000 and 2000) from the
distributions F and G (of X and ¥ ) whith tail index ¥; and ¥, respectively (Parto

model).

S2: Choose a different values of proportion of the uncensored data, small and big
value of p (0,25 and 0,85) (the percentage of censoring in the right tail is 75% and
15% respectively), such as

— Pt

Y2 =1

S3: Consider the sample (Z;.9;) where
Z,=min(X,Y)and 6, =X, <V} 1<i <n

S4: Estimate ¥; by the adapted Hill and the adapted t-Hill estimators ﬁicﬂ D and

7L defined in (2.1) and (2.2) respectively. To determine the optimal
numbers of upper extremes, we utilize

k,,. = argminMSE[7," (k)].

b

S5: Calculate the empirical bias and Mean Square Error (MSE) to measure the
. ~ e i) o~ e EHIT)
performance of the estimators #; and ¥;

R
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The corresponding tables contains our results for two different values of p (0.25

and 0.85) and y;=1.5

Table (3.1): Empirical bias and MSE of the two estimators based on 100 samples of size n

from Pareto model with ¥4 =1.5 and p=0.25.

(et Hill) (e Hill)

1 1
N Bias abs MSE Bias abs MSE
300 0.1011508 0.1570170 0.1121830 0.1809540
600 0.0392026 0.0961756 0.0616084 0.1327581
1000 0.0213432 0.0392381 0.0281987 0.0658349
2000 0.0120958 0.0188821 0.0123296 0.0246296

Source: Results of simulation in R.
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Table (3.2): Empirical bias and MSE of the two estimators based on 100 samples of size n
from Pareto model with ¥4 =1.5 and p=0.85.

ﬁ e.tHill) ﬁ e.Hill)

N Bias abs MSE Bias abs MSE
300 0.0293469 0.0297518 0.0336163 0.0308642
600 0.0179344 0.0248831 0.0199505 0.0301349
1000 0.0088681 0.0125549 0.0119448 0.0160600
2000 0.0050819 0.0077457 0.0086366 0.0081563

Source: Results of simulation in R.

We can remark that when the censoring percentage decreases, the bias and MSE
of the estimators *Ff“ﬂ “and ﬁ“’mm} decreases. We also found that the adapted t-
Hill estimator has less bias and MSE then the adapted Hill estimator for each p, it
performs better for large simple size. This show the robustness of our estimator.

. . . - » il el e il
Figure (3.1): Histograms of the estimators }ff FHD) and }ff Hal) for ¥1=1.5 and p=0.25.

Source: Output of R.
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Figure (3.2): Histograms of the estimators }f'i for ¥1=1.5 and p=0.85.

Source: Output of R.

From this figures, histograms are well concentrated around the real tail index
value y1=1.5 (the vertical line) in case where p=0.85 (high percentage of

censoring in the right tail) and especially for our estimator }?l':c’rm”}.

4- Conclusion:

Estimation of the extreme value index under random censoring is a new research
in theory of extreme value. Firstly it was reported in Reiss and Thomas et al.
(1979), then it was approched recently by Beirlant et al. (2007) and Einmabhl et al.
(2008). In this paper we proposed a version of t-Hill estimator in the case of right
censored data. Simulation study show that the proposed estimator is robust then
adapted Hill estimator.
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