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Résumé  
Description du sujet : L'analyse de la sensibilité locale (SA) a pour but d’orienter les recherches en 

mettant l'accent sur les paramètres qui contribuent le plus à la propagation de l'incertitude. 

Objectifs : Le but de la présente étude est d'évaluer un modèle basé sur une description phénoménologique 

quantifiée du niveau de population et de dynamique des ressources (fer) en termes de sa capacité à capturer 

des caractéristiques de croissance typiques et identifier les facteurs clés (entrées du modèle) qui contribuent 

le plus à la variation des sorties du modèle. 

Méthodes : Une analyse de sensibilité variant un facteur à la fois ainsi que le calcul des sensibilités locales 

logarithmiques utilisant un ensemble de 10.000 vecteurs aléatoires dans lesquels chaque paramètres 

respectif du model est échantillonnée indépendamment ont été effectué afin de classer les sensibilités des 

paramètres par rapport aux variables d’états du modèle étudié. 

Résultats : Les résultats de l'analyse de sensibilité ont permis de capturer les caractéristiques cinétiques 

essentielles de toutes les variables d'état (correspondance numérique et conceptuelle), ainsi qu’elle a permis 

de classer les paramètres du modèle en fonction de leur importance relative sur le modèle. 

Conclusion : Les résultats de l'analyse de sensibilité indiquent quels composants du système doivent être 

mesurés avec plus de précision et de fiabilité, afin d'obtenir de meilleures prévisions, mais aussi ceux qui 

doivent être optimisés pour de meilleurs rendements 

Mots clés: Pseudomonas fluorescens; Analyse de sensibilité locale; milieu appauvri en fer. 

 

SENSITIVITY ANALYSIS OF A CHELATING PROCESS MODEL APPLIED TO 

A PHYTOBENEFICAL PSEUDOMONAS FLUORESCENS. 
 

Abstract 
Description of the subject: Local sensitivity analysis (SA) is mathematical modelling technique, which is 

widely used to ascertain the response of a simulation model to changes in its input parameters by focusing 

on the parameters that contribute the most to the uncertainty of the model response. 

Objective: The aim of the present study is to assess a chelating process model, based on a qualitative-

phenomenological description on the level of population and resource dynamics in term of its ability to 

capture typical growth features and pinpoint key factors (model inputs) that contribute most to the variation 

of model outputs. 

Methods: A one factor at a time approach along with logarithmic local sensitivities using a set of 10.000 

random parameter sets in which individual parameters were sampled independently, was carried out in 

order to asses and rank parameter sensitivities toward models states variables. 
Results: Sensitivity analysis results allowed to capture essential kinetic features by successfully predicting 

key features of all state variables (numerical and conceptual correspondence), and pinpoint and rank models 

parameters according to their relative importance toward models state variables. 

Conclusion: The results of the sensitivity analysis indicate which components of the system need to be 

measured more precisely and reliably, in order to obtain better predictions but also those that need to be 

optimized for better yields.  

keywords: Pseudomonas fluorescens; Local sensitivity analysis; Iron depleted media.  
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INTRODUCTION 
 

Soil-borne, phytobenefic bacteria are 

organisms that are well adapted to the 

constraints of their biological and physioco-

chemical environment [1]; these bacteria are 

known by several generic names, including 

biological control agents (BCAs), plant growth 

promoting rhizobacteria (PGPR) or 

biopesticides. Genera, such as, Pseudomonas, 

are well described Gram-negative 

microorganisms that are known as colonizers of 

the rhizosphere [2, 3] and the phyllosphere [4, 

5]. In addition, It has been demonstrated that 

Pseudomonads can be used to control plant 

pathogens because of their catabolic versatility 

which releases a remarkable diversity of 

exoproducts with antimicrobial, metal chelating 

(sidérophores i.e. pyoverdine), lytic, and 

phytohormonal activity. Indeed, Pseudomonads 

strains, do not involve a systematic use of 

antibiotics compounds such as some other 

biocontrol strains that exhibit direct antagonistic 

activities against phytopathogens. Then, they 

have the additional advantage that they do not 

raise the concern of resistance development [2, 

6-8]. 

Based on the aforementioned characteristic 

features, some species of the Pseudomonas 

genus can be considered to be serious potential 

candidates for bioproducts development in 

substitution to chemical introns use. In this way, 

current efforts to isolate, characterize and select 

the best bacterial antagonists to control 

phytopathogens worldwide are continuously 

reported in the literature [6, 8-15]. In parallel, 

predictive modelling techniques that rely on 

mathematical models are used to cope with the 

classical approach limitations and select the best 

antagonist strains by the way of laboratory-

based measurements of simple variables that are 

put in models to indirectly deduce and predict 

the value of growth and yield parameters that 

cannot be directly measured. Thus, 

mathematical modelling offers the possibility to 

explore a large number of scenarios without 

resorting to time-consuming field or laboratory-

based experiments.   

Among various biological modelling 

techniques, sensitivity analysis (SA) is a widely 

used method that ascertains the response of a 

simulation model to changes in its input 

parameters [9]. In practice, SA is not only 

applied to examine the importance of input 

parameters but also it is used in model 

development process as it allows to elucidate 

the impact of different model structures and 

assumptions; orientate parameter estimation and 

experimental design [10]; prepare for model 

parameterization and direct research priorities 

by focusing on the parameters that contribute 

the most to uncertainty of the model response 

[11, 12]. By this way, the most sensitive model 

input parameters and their corresponding poorly 

known biological processes are the potential 

targets for further experimental analysis for 

each specific case. 

In this study, we conduct a local sensitivity 

analysis on a phenomenological lag phase 

model describing the dynamics of a 

phytobenifical Pseudomonas fluorescence 

strain, toward its various parameters. The model 

involves a number of state variables and 

parameters that are related to growth activity, 

substrate availability and the amount of released 

secondary metabolites (pyoverdine) in the 

culture broth media which is triggered when the 

concentration of iron get low in the system. For 

this purpose, we have adapted the initial 

conditions and stimuli to our own laboratory 

conditions and assumed the same model 

structure as the one proposed by Fgaier et al. 

[13]. 

 

MATERIAL AND METHODS  

 

1- Growth Measurement and 

siderophore assay  
 

Pseudomonas fluorescens, an 

autochthonous strain isolated from palm 

date rhizosphere in southern Algeria 

(Ghardaia) was used in the study [14, 15]. 

Bacterial cultures were grown 40 h at 

25°C with continious shaking at 200 rpm 

in a 500 ml Erlenmeyer flask containing 

150 ml of King's-B medium, the whole 

was maintained at pH 7. For growth and 

pyoverdine measurements 2 mL samples 

were taken at time zero, and then at 1-hour 

intervals all over the experimental period 

[16]. 

Both growth and siderophore content were 

determined according to the method of Meyer 

and abdallah [16]. Bacterial growth was 

calculated turbidimetrically at 600 nm. For the 

estimation of the quantity of secreted 

siderophore into the culture medium, this was 

determined by removing bacterial cells (Solid 

phase) by centrifugation at 6000 rpm during 20 

mn and measuring the absorbance of the 

supernatant at 400 nm in a Shimadzu 

spectrophotometer device.  
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2- Numerical Experiments 

 

2.1. Presentation of the 

mathematical model 
 

A lag phase model consisting of a 

non-autonomous system of five nonlinear 

ordinary differential equations built by 

Fgaier et al. [13] on the basis of the well-

known Baranyi’s model was used in this 

experiment [17]. This model assumes that 

only a fraction   of the whole bacterial 

population (N), contributes to the growth 

process when introduced into a new 

environment, while the remaining cells 

adapt their physiological state to the new 

conditions and constraints. The bacterial 

population is characterized by two 

variables, population size (N) and its 

lumped physiological state, expressed in 

terms of a function α (t). The chelator 

(pyoverdine) is described by its optical 

density (P). Bacterial growth depends on 

iron availability in the medium and is 

conceptually represented in the model by 

two terms giving: the freely dissolved iron 

(S), and bound by chelator molecules (Q). 
 

In this model, coefficients     , 

 ,     ,  ,  , ,v are all positive 

values and represent for: 
 

   , the growth yield constants, 

commonly referred to as the substrate-to-

biomass yield factor, used to convert 

between cell growth rate and substrate 

utilization;  , the specific growth rate as a 

function of substrate concentration;  , the 

value of the concentration of nutrients S 

where the specific growth rate µS has half 

its maximum value (half-growth 

concentration rate);   , iron concentration 

triggering secondary metabolite synthesis 

(pyoverdine);  , coefficient related to the 

amount of chelated iron; β, coefficient 

related to the amount of freely available 

iron;    is a coefficients related to chelation 

speed rate;  , recovery rate of the PGPR 

population;  ( ), function of physiological 

adaptation state given by the term       
in the model [13].  

 

2.2. Local sensitivity analysis  
 

In this study, we have performed a 

one factor at time sensitivity analysis 

which measures the sensitivities that 

reflect the magnitude of relative change in 

a model’s output variable induced by a 

local (+/- 10 & 20%) relative change in a 

model’s parameter X (model inputs). This 

procedure is done by varying only one 

input variable while keeping the rest 

constant to their nominal values.  

In addition, we have calculated the 

logarithmic local sensitivities, Sij (t), in the 

vicinity of the default parameter set, at 

time moments t. [18]: 
 

                                    ( ) 

         (     ⁄ ) (     )⁄        
 

Here, Xi (t) is the model’s variable order 

and pj is the model’s jth parameter (of the 

model’s 8 main parameters). Sensitivities 

are calculated for each of the 41 evenly 

spaced time points that discretize the total 

of 1.5-day simulation interval into 1-h 

subintervals (i.e., hour 0, hour 1, and so 

forth). 

In this section, 10,000 random 

parameter vectors in which each individual 

parameters is sampled independently from 

intervals, permitting up to 2-fold 

deviations (up or down) from the 

corresponding optimal default values X
0
, 

are generated and ranked by using their 

absolute values. For vector generation, a 

Matlab function (LHSDESIGN) 

performing a Latin Hypercube Sampling 

method was used [19]. 

 

RESULTS  

 

1. Model sensitivity analysis  
 

The parameterisation of the 

governing system of differential equations 

was set according to real data entering 

results obtained from laboratory-based 

measurements of biomass and pyoverdine 

content. One at time, sensitivity analysis 

results are represented in (Fig. 1). 
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Figure 1: Single parameter variation plots for the effect of k (A; A-1); Beta (B); Sigma (C; C-1); Yn (D; D-1; D-2); mu (E; E-1; E-2); v (F; F-1; F-2), on model’s 

solution. 
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For models dynamical behaviour, 

simulations results show that the 

bacterial population density (N) pass 

through a lag phase during which the 

model account for microbial cells 

adaptation to their new environment 

and become entirely healthy by 

rewiring of regulatory networks via 

natural selection of horizontal gene 

transfers, gene duplication, deletion, 

readjustment of kinetic parameters, 

and myriad other genetic 

reorganizational events. This phase 

is followed by an exponential 

growth phase where they multiply 

actively and produce pyoverdine (P) 

that diffuse in the culture broth (i.e. 

Fig.1. D, D-1, E). Ultimately, when 

iron becomes limited in the medium, 

bacterial population transits to a 

stationary phase during which the 

maximum population density is 

reached (Fig.1. D, E). In parallel, 

depletion of the freely available iron 

(S) passes through different phases 

(Fig.1. F-2), which are first slow but 

then accelerates as the population 

passes the initial phase of 

adaptation. The drop in free iron (S) 

induces an increase in the chelated 

iron (Q) which eventually drops to 

the state of total depletion as well 

(Fig.1. E-2, F-1). 

Sensitivity analysis results 

show that single parameter variation 

of Beta, Sigma, Delta and       
indicate little or no effect on the on 

the two biomass state variable (N) 

and the amount of free iron (S). 

However, the latter show a 

decreasing effect on the pyoverdine 

slope curve (Fig. 1 (B; C-1)), since 

we observe different levels of 

synthesis speed rate giving rise to a 

variable amount of chelating 

molecules over time if their 

optimum values are lowered. In 

addition and unlike to the rest of 

above-mentioned parameters that 

had no effect on the chelated iron 

profiles (Q). The parameter Sigma 

showed a moderate effect that was 

expressed in terms of chelation rate 

of the freely available iron 

molecules (Fig. 1 (C)) occurring 

during the last part of the 

exponential growth stage and is 

associated with a fall in the number 

of chelating molecules over time 

until reaching the state of total 

exhaustion. 

Moreover, an inverse 

relationship is observed between the 

bacterial biomass production status 

variable and the siderophore 

synthesis speed rate, since the 

increase in the nominal value of the 

parameter (Mu) is associated with an 

increase in pyoverdine content that 

exhibits a slight but delayed decline 

in the amount of biomass produced 

(Fig. 1 (E, E1)). In parallel, the 

increase in the nominal value of the 

parameter (Mu) results in a chelation 

delay of the freely available iron of 

about 5 to 6 hours, leading to a less 

rapid depletion of the latter in the 

system (Figure. 1 (E2)). 

Furthermore, compared to 

the effect of (v), (Mu) has exhibited 

a much more pronounced effect on 

the slope of all state variables and on 

the speed at which the stationary 

equilibrium phase is reached for the 

variables microbial biomass (N) and 

pyoverdine content (P). 
 

2. State variables robustness 

analysis 
 

To test the robustness of models 

parameters, the logarithmic sensitivities of 

the 10,000 randomly selected parameter 

sets for each of the considered 41 

simulation time points and each of the 4 

state variables are calculated. The 

occurrence frequencies of each of the 

parameters for which a given variable 

demonstrated the highest, second-highest, 

and/or third-highest sensitivity with respect 

to the most important (4) rate perturbations 

are calculated and plotted in the figure 2, 

for three representative points. 

In response to the modulation of 

each one of the constitutive model 

parameters, a dynamic evolution of the 

sensitivity of each variable is observed for 

all ranks, this change leads to a progressive 

shift of the sensitivity profiles of one or 

more sensitive variables to the benefit of 

others (Fig. 2). 
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Our model investigations show that the 

state variables (S), (Q) and (P) (in 

descending order of magnitude), are the 

most sensitive with significant relative 

changes in their values in response to the 

variation of each of the parameters listed 

above (Figure. 2).  

In our analysis, the variables (S) and (Q), 

accounting for the bioavailability of the 

substrate are the most important with 

respectively 52.80% and 29.60% 

occurrence frequency over the 10,000 

studied vectors. (P) and (N) follows these 

parameters, with respectively 12.29% and 

5.30% occurrence frequencies. 

Overall, the state variable (S) can be 

considered as the most sensitive indicator 

of local changes for the two parameters (μ) 

and (Yn).  

This result is not surprising since (Yn) and 

(µ) are both parameters related to bacterial 

growth which are both depending on the 

amount of freely available iron in the 

medium.  

Thus, there is a positive relationship 

between iron availability and microbial 

growth in function of the amount of 

chelates in the medium. 

Paradoxically, some parameters 

had the same cumulative effect while 

having opposite dynamic behaviour. 

Consequently, the following parameter 

pairs (μ, k) and (β, S 
∞
) that had roughly 

the same cumulative effects and the same 

ranks associated with closely identical 

sensitivity profiles (Fig. 2).

 

 

 

 

 
Figure 2. Sensitivity analysis of the first (Solid bars), second (Striped bars) and third (Bars with squares) 

most important variable that exhibited the large relative change in response to parameter modulation for 

five representative simulation time points. 
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Following Figure 2. Sensitivity analysis of the first (Solid bars), second (Striped bars) and third (Bars with 

squares) most important variable that exhibited the large relative change in response to parameter modulation 

for five representative simulation time points. 

 

DISCUSSION 

 
The computational model 

captured essential kinetic features by 

successfully predicting key features of 

all state variables (such as the overall 

curve shape, peak and resolution time), 

as well as it gave predictions for iron 

dynamic over time for whom no 

experimental data were available to 

compare (Figure.1. A-1, D-2, E-2, F-1). 

For the one at time sensitivity 

analysis, all model parameters showed a 

deviation typically less than 10%. This 

can be considered as a very satisfactory 

result since these parameters describe 

complex biological systems involving a 

very large number of reactions taking 

place between the microorganism and 

their direct environment. These 

observations suggest a possible use of 

the different sensitive parameters that 

can be easily measured in the local 

environment of the culture media, as 

predictive indicators of the three 

essential variables of the model, which 

are the microbial growth rate, 

pyoverdine production rate and level of 

bioavailable iron [9].  

Globally, the results of the sensitivity 

analysis indicate which components of 

the system need to be measured more 

precisely and reliably, in order to obtain 

better predictions but also those that 

need to be optimized for better yields. 

In addition, and in a context of large-

scale production, the parameters (Yn) 

and (μ) are the key factor to be 

optimized, if an increase in the 

microbial biomass is desired in the first 

place. 

Concerning the real-time monitoring of 

the iron bioavailability, the parameter 

(δ) must be tuned since it gives a direct 

relationship between the quantity of 

freely available and chelates iron and 

conditions the iron chelation process. 

Along with the parameter (σ) which 

gives a partial relationship between the 

two quoted state variables, which are 
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function of the amount of pyoverdine 

content in the system. Thus, they must 

be taken into account since this one 

conditions the process of iron release in 

the cytosol of bacterial entities [20]. 

Overall, sensitivity analysis of the 

model parameters emphasized the 

importance given to the bacterial 

growth parameters over those 

associated with substrate use [20]. 

Changes in biomass concentrations 

following variation in the maximum 

specific growth rate (μ) and (Yn), 

followed by (v) and (k) in order of 

decreasing effect magnitude are greater 

than those obtained from parameters 

associated with iron bioavailability and 

use of the substrate represented by the 

parameters (δ) and (σ). For the rest of 

the parameters, the sensitivity was 

rather weak for (k, beta and S
∞
). 

for the sake of model simplification, the 

insensitive parameters must be set to 

their respective default value or simply 

deleted or substituted by other 

parameters, which are more decisive for 

the description of the phenomenon of 

interest. However, it must be kept in 

mind that the more the number of 

parameters is increased, the greater the 

complexity of the model will be, 

leading to a decrease in our ability to 

test this model in a critical and objective 

way [11, 21].  

in our study, the great sensitivity of the 

studied system to the variation of the 

parameters (Yn, μ and v), representing 

respectively (the growth yield constants, 

the specific growth rate and the 

physiological state of the population) is 

translated biologically by the 

management of the flow of matter and 

energy that makes the microorganism 

maximizes the production of the 

elements necessary for growth when the 

energy is abundant. Thus, at the 

beginning of growth, the conversion 

efficiency of the substrate into biomass 

is high, but the energy yield is low. 

Then, when the energy is limiting, the 

microbial population modifies the 

composition of the environment like in 

the case of the overflow metabolism 

activation (lack of carbon source), or 

when the production and excretion of 

secondary metabolites towards the 

external environment causes a drop in 

the status of the pH, that modifies the 

physicochemical properties of the 

surrounding fluid, in this specific case, 

all the reactions are conducted with 

maximum energy efficiency, sometimes 

at the detriment of the conversion 

efficiency of the substrate [22; 23]. This 

is all more valid than the present 

experiment was done in Erlenmeyer 

flasks containing 250 ml of media, 

where the drop in the pH level can 

occur quickly. 

Finally, we should be cautious 

about the precision of sensitivity 

analysis results, especially when the 

model’s parameters are not identifiable 

(parameters of the model that could not 

be directly measured experimentally) or 

if one focus on single parameters 

variation and do not take into account 

possible linear or non-linear interactions 

amongst parameters. 

 

CONCLUSION 
 

In this study, we used a 

computational modelling approach to 

gain mechanistic insights into a lag-

phase growth model describing the 

bacterial evolution and pyoverdine 

production in an iron-deficient media. 

First, our system of differential 

equation–based model successfully 

predicted key kinetic features of all 

state variables and gave predictions for 

iron dynamic over time for which no 

experimental data were available to 

compare with. Second, local sensitivity 

analysis allowed us to cover a large 

range of the parameter space and gain 

insight about the relative importance of 

input parameters together with the 

output sensitivity to the most important 

parameters considered by the model.  

Finally, and even if the concept of 

local sensitivity analysis is simple, 

and is effective if the localized 

sensitivity is of interest, no 

absolute good sensitivity analysis 

method for all biological models 

exist because most of the methods 

have their pros and cons. 
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Thus, if information on the overall 

effect of an input factor on the 

model is needed, the limitation of 

this derivative-based method is 

evident, as it cannot represent the 

overall sensitivity index for most 

numerical models that involve 

nonlinear relationships and strong 

interactions.  
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