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A B S T R A C T 

 

This paper extends the concept to isotropic functionally graded materials and addresses 

fracture problems under mechanical loading. The mode-I and mixed mode stress intensity 

factors (SIFs) are determinate by combination between the finite element method and the 

displacement extrapolation technique (DET). The variation continue of the elastics 

properties is incorporated at the centroid of each finite element, using the Ansys 

Parametric Design Language (APDL). In this work, two examples are analysed to check 

for the robustness of the present approach, the FGM disk with a central inclined crack 

subjected to concentrated couple forces and the three-point bending specimen with crack 

parallel to material gradation. The numerical results obtained by present technique are 

discussed by comparison with other published results. 

1 Introduction 

The estimation of mixed mode stress intensity factors (SIFs) for fracture problems by means of the finite element method 

(FEM) is a technique widely employed to analyse non standard crack configurations. The evaluation methods can be 

categorized into two groups, those which use the energy release when the crack propagates and those based on field 

extrapolation around the crack tip [1, 2]. The first group includes the elemental crack extension, J-contour integration, the 

stiffness derivative method [3] and the energy domain integral formulation [4,5]. The main disadvantage of these approaches 

is that SIFs KI and KII , for mixed mode application, are very difficult to be separated between them. While the latter group 

which requires finer meshes to produce a better numerical representation of stress fields near the crack-tip. The singular 

elements are usually generated to facilitate the SIFs evaluation. For most commercial finite element codes, stress intensity 

factors are easily computed directly from nodal displacements, without resort to specialized post-processing routines, which 

are not always implemented in the commercial programs. In addition, the displacement techniques are still widely used 
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because the continuous improvement of computers has reduced memory and computing time requirements. One of the most 

frequently used methods is displacement extrapolation (DET), which will be investigated in this study.  

Functionally graded materials (FGMs) are one of the modern composites materials involving spatially varying volume 

fractions of constituent materials, thus providing a graded microstructure and macro properties. FGMs are used in many 

engineering applications, including aerospace, transportation, electronics, bio-medical, etc. For fracture problems, various 

techniques have been employed to determine the stress intensity factors (SIFs) in grades materials. Gu et al. [6] studied the 

crack-tip field of FGMs by a simplified method, using the equivalent domain integral (EDI) technique and Anlas et al. [7] 

evaluated the mode-I SIFs considering the modified integral method. The interaction integral method has been employed to 

determine the components of SIFs for isotropic and orthotropic homogeneous materials [8]. Dolbow and Gosz [9] 

investigated the interaction integral technique to extract the modes I and II SIFs in isotropic FGM materials. Gao et al. [10] 

presented 2D crack studies in non-homogeneous isotropic and linear elastic FGMs by means a boundary-domain integral 

formulation. Rao and Rahman [11] extended EFGM to determine the fracture parameters of isotropic FGM using two 

interaction integrals in terms nonhomogeneous and of homogenous auxiliary fields. Kim and Paulino [12] extended various 

finite elements based approaches for FGMs fracture analysis such as interaction integral, mixed-mode J-integral and modified 

crack closure methods. Dag and Yildirim [13] described the Jk-integral method for inclined cracks in graded materials 

subjected thermal loads. Yildirim et al. [14] analysed delamination behavior of orthotropic FGM coatings using the 

displacement correlation method. A modified form of the J-integral for axisymmetric FG cylinders under applied mechanical 

loads was proposed in [15] and was used to obtain reference SIFs from the FE analysis results. Benamara et al. [16] 

implemented the displacement extrapolation technique to study the fracture and the crack propagation problem in isotropic 

FGMs. Kim and Paulino [17] investigated the equivalent domain integral approach to calculate the mixed mode SIFs in 

FGMs, using the path-independent Jk*-integral. Recently, Ait Ferhat et al. [18] implemented the generalized displacement 

correlation (GDC) technique to determine the SIFs under mechanical and thermal fracture in isotropic FGMs. 

The objective of the current study is to present a finite element numerical modeling of fracture problems for isotropic 

FGMs. Using the APDL code [19], the displacement extrapolation method is employed to determine numerically the SIFs 

under mode I and mixed mode loadings. In this work, the effect of material gradation and crack direction is analysed. Two 

different standard geometries are considered in this work, the FGM disk with a central inclined crack subjected to 

concentrated couple forces and the three-point bending specimen with crack parallel to material gradation. The results 

obtained in this study are compared with available solutions in literature.  

The present paper is organized as follows: Section 2 presents the numerical computation of mixed mode SIFs.  

The two proposed examples are studied numerically in Section 3, considering a central inclined crack in isotropic FGM disk 

and a crack parallel to material gradation in three-point bending specimen. The paper closes in Section 4 with some comments 

and conclusions.  

2 Evolution of stress intensity factors 

The displacement extrapolation technique is one of the simplest and most frequently used methods [20-22]. For linear 

elastic solids and under mode-I loading, the displacement normal to crack plane, 𝑣 is expressed by [7]: 

 𝑣 = 𝐾𝐼
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Where 𝐾𝐼  is the SIF under pure mode-I, 𝐸 is the elasticity modulus, 𝑣 is the Poisson’s ratio, 𝑘 is defined by (3-4ν) for 

plane stress conditions and  (3-4ν)/(1+ν)  for plane strain conditions, 𝑟 and 𝜃 are the polar coordinates defined at the crack 

tip, and 𝐴i are parameters depending on the geometry and load on the specimen. 

The near tip nodal displacements at nodes b, c, d and e as shown in Fig. 1a, are of interest to calculate the SIFs under 

mixed mode conditions. The displacements are extrapolated by considering equation (1) along the crack faces θ = ±π. 

Particularizing for nodes b and c on the singular element at the upper face of the crack gives [23] : 

 𝑣𝑏 = 𝐾𝐼√
2

𝜋

(1+𝜈)(𝑘+1)

4𝐸
+ √𝐿 −

𝐴2(1+𝜈)(𝑘+1)

12𝐸
𝐿3/2 + 𝑂(𝐿5/2)  (2) 

 𝑣𝑐 = 𝐾𝐼√
2

𝜋

(1+𝜈)(𝑘+1)

2𝐸
+ √𝐿 −

2𝐴2(1+𝜈)(𝑘+1)

12𝐸
𝐿3/2 + 𝑂(𝐿5/2)  (3) 



 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 7 (2020) 241–252  243 

 

Where 𝐿, is the length of the element side connected to the crack tip.  

Using equations (2) and (3), the SIF 𝐾𝐼  can be obtained as: 

 𝐾𝐼 =
𝐸

3 (1+𝜐)(1+𝑘)
√

2𝜋

𝐿
(8𝑣𝑏 − 𝑣𝑑)  (4)  

The nodal displacements at the other two nodes can be estimated by the similar technique. If one considers the all four 

nodal displacements, the SIF 𝐾𝐼  can be expressed as: 

 𝐾𝐼 =
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The displacement tangential to the crack plane, 𝑢 under pure mode II loading, is given by: 

 𝑢 = 𝐾𝐼𝐼
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Where 𝐾𝐼𝐼 is the SIF under pure mode-II loading.  

Similarly, using the nodal displacements of the four nodes, the SIF 𝐾𝐼  can be expressed as: 

 KII =
E

3 (1+υ)(1+k)
√

2π

L
[4(ub − ud) −

(uc−ue)

2
]  (7) 

For isotropic FGM materials, elastics properties 𝐸 and ν are evaluated at the crack-tip. The mixed mode SIFs 𝐾𝐼  and 

𝐾𝐼𝐼 are given by [24-25]: 
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Fig.1a shown the special quarter point finite elements proposed by Barsoum [26]. These elements are used investigated 

to obtain a better approximation of the field near crack-tip; the mid-side node of the element in the crack-tip is moved to 1/4 

of the length of the element, as shown in Fig.1b. 

 

Fig. 1 – Special quarter point FE used for displacement technique 

In this study, the Ansys Parametric Design Language has been investigated for creating the subroutine to simulate the 

fracture of isotropic FGMs, under mixed mode loadings. The displacement extrapolation method (DET) is employed, to 

determine the SIFs using Eqs. (8) and (9). The examples proposed in this paper are studied for different crack lengths. Each 

crack size consists of : 

1. Input the geometrical model for pre-cracked FGM structure.  
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2. Input the variation continues of the elastics properties are implemented using Ansys Parametric Design Language 

code.  

3. Meshing of the geometrical model by 2D isoparametric element: in this step, the 8-node isoparametric element 

(PLANE183) is employed for mesh generation in cracked FGM plate, as shown in Fig. 2(a). The main characteristic 

of 2D- PLANE183 element is the fact that the middle node of the element is translated on one quarter of the element 

side. This transformation changes the shape function to model the singularity at the crack tip (Fig. 2(b)).  

4. FE analysis: Solve the problem as a static analysis. 

5. Calculation of SIFs from Eqs. 9 and 10: The implementation of the present technique using APDL code is described 

in appendix A. 

 

Fig. 2 – Singular elements for 2-D models using the element of PLANE183 

 

3 Results and discussion 

The performance of the displacement extrapolation technique to calculate the SIFs in isotropic FGMs is analysed by 

means of finite element method. For this purpose, two examples are investigated: 

a) An isotropic FGM disk with a central crack subjected to concentrated loads.  

b) A crack parallel to material gradation in three-point bending specimen.  

3.1 FGM Disk with an inclined center crack  

In this problem, consider a FGM disk with a central inclined crack of θ=30° subjected to concentrated forces. The 

geometry of FGM disk, boundary conditions and crack length are illustrated in Fig. 3a. The FGM disk is considered under 

plane stress conditions and the variation of Young's modulus 𝐸 along the radial direction is expressed by [27]:                                                                           

 𝐸(𝑟) = 𝐸̅𝑒𝛽𝑟  (10) 

r is the disk radius, with 𝑟 = √𝑋1
2 + 𝑋2

2 

X1 and X2 are Cartesian coordinates. 

A point load P=± 100 units is applied to the top and bottom of the FGM disk, at coordinate nodes (X1, X2) = (0, ±10). 

The displacements u1=0 at the coordinate node (X1, X2) = (-10, 0) and u2 =0 at the coordinate node (X1, X2) = (±10, 0).  

The following data are investigated for the FEM study: 
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𝐸̅=1, ν=0.3, R=10, a=1, β= (0.5, 0.25, 0, -0.25, -0.5,),  

The FGM disk is meshed by 8-node isoparametric element as shown in Fig. 3b. A special mesh is investigated around crack 

tips to consider the singularity of stress and deformations fields (Fig. 3c). This mesh will be employed to calculate the mixed 

mode SIFs, using eqs. 8 and 9.  

 

 

Fig. 3 – FGM Disk with an inclined center crack - a) Geometrical model with boundary conditions - (b) Typical mesh 

model - (c) Special finite elements around crack tips 

Figs (4a) and (4b) show respectively, the variation of the SIFs 𝐾𝐼  and 𝐾𝐼𝐼 as a function of the parameter β (with a/R=0.1 

and θ=30°).Using present method, the results obtained for 𝐾𝐼  and 𝐾𝐼𝐼 are compared with those reported by Kim and Paulino 

[12], by means of modified crack closure method (MMC) and interaction integral method (M-Integral). In addition, the SIFs 

are also calculated by the displacement correlation technique (DCT) adopted in reference [12]. This comparison indicates a 

good approximation between the four techniques. 
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Fig. 4 – Variation of 𝑲𝑰 and 𝑲𝑰𝑰 vs. β - a) Variation of 𝑲𝑰 - b) Variation of 𝑲𝑰𝑰 

 

For reasons of symmetry in the model geometrical and the boundary conditions, the evolution of the SIFs 𝐾𝐼  and 𝐾𝐼𝐼 as 

a function of the angles of orientation θ is studied in the interval [90°, -90°]  
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Figs. (5) and (6) shows the variation of the SIFs 𝐾𝐼  and 𝐾𝐼𝐼  as a function of the positive and negative angles of crack 

direction, considering various size of initial crack (a/w) and β = -0.75. The obtained results from present technique allow us 

to deduce the following conclusions: 

 The SIF 𝐾𝐼  is maximum when the crack direction θ=0°, which is normal since it is in the presence of the opening 

mode, then it decreases progressively towards negative values with the increase the crack direction θ as shown in 

Fig. 5. 

 The negative values of 𝐾𝐼  obtained for orientations vary between [90°, 76°] and [-90°, -76°]. These orientations 

present a risk of propagation of the crack by shear mode.  

 The SIF 𝐾𝐼  increases with the crack length. The curves plotted for each crack size and for positive and negative 

crack directions are symmetrical to each other with respect to the ordinate axis (yy '), as shown in Fig. 5.  

 In the case of positive angles (Fig. 6), the SIF 𝐾𝐼𝐼 =0 when the crack direction θ=0° or well reached (θ=90°) and 

increases proportionally as a function of angle until at a maximum value corresponds to an angle θ=45° from which 

the curve takes a descending form with the increase of the crack direction θ. This evolution has been noticed for 

homogeneous materials case, considering numerical data reported in references [28] and [29]. 

 The 𝐾𝐼𝐼 curves obtained for given crack length and for positive and negative crack directions are symmetric 

compared to the point M of coordinates (x, y) = (0,0) (Fig. 6). These results indicate that the evolution of KII is 

dependent on the crack direction angle.  
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Fig. 7 – Variation of KI and KII vs. crack angles θ (β = -

0.50) 

Fig. 8 – Variation of KI and KII vs. crack angles θ (β = -

0.25) 
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Figs. (7 ~11) show the variation of the SIFs 𝐾𝐼  and 𝐾𝐼𝐼 as a function of the positive and negative angles of the crack, 

using different values of 𝛽 (-0.50, -0.25, 0, 0.25, 0.50). The evolution of SIFs 𝐾𝐼  and 𝐾𝐼𝐼 are plotted in the same figure for 

each value of 𝛽.  

The same variation of SIFs 𝐾𝐼  and 𝐾𝐼𝐼 is obtained as that observed for 𝛽 = -0.50. The SIF 𝐾𝐼  is maximum when the crack 

direction is zero, then it gradually decreases to negative values with the increase of the crack angle 𝜃.  

The range of negative values depending the parameter 𝛽, i.e. according to the variation of Young's modulus 𝐸 along the 

radial direction. 
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Fig. 9 – Variation of 𝑲𝑰 and 𝑲𝑰𝑰 vs. crack angles θ (β 

=0) 

Fig. 10– Variation of 𝑲𝑰 and 𝑲𝑰𝑰 vs. crack angles θ (β = 

0.25) 
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Fig. 11 – Variation of 𝑲𝑰 and 𝑲𝑰𝑰 vs. crack angles θ (β = 0.50) 

3.2 FGM beam subjected to three-point bending 

In this example, three-point bending specimen with crack parallel to material gradation is considered. Fig. 12 shows the three-

point bending specimen geometry and boundary conditions. For this study, the Poisson's ratio ν is assumed to be constant 

and the variation of Young's modulus E is considered linear along the thickness direction, expressed by [11-12]: 

 𝐸(𝑥2) = 𝐴𝑥2 + 𝐵  (11) 
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with:   𝐴 =
(𝐸2−𝐸1)

2ℎ
 and 𝐵 =

(𝐸2+𝐸1)

2
 

The following data are investigated for the present study:  

2H = 10 units, L = 54 units, t = 1 unit and force P = 1 unit is applied to the specimen center, under plane stress 

conditions. 

The FGM beam is meshed with 8-node isoparametric element and in particular, special elements are employed to 

characterize the singularity around the crack tip, as shows in Fig.13. The SIFs 𝐾𝐼  are evaluted for three crack sizes: a=4.5, 5 

and 5.5 units. 

 

Fig. 12– FGM beam geometry with boundary conditions  

 

   

Fig. 13– Typical FE mesh of FGM beam: (a) Typical mesh model (b) Detail mesh around crack tip 

 For the three crack sizes, Fig.14 illustrated the evolution of the normalized SIF (
𝐾𝐼√𝐻

𝑃
) according to the ratio 𝐸1/𝐸2. 

The results obtained by FE method using present technique, are compared with obtained by Kim and Poulino [12], using 

MMC, J*-Integral and DCT methods.  

The plotted curves show that the results obtained by DET are identical with those obtained by the three methods. The 

application of present technique is valid for other geometries, with other formulas for the material properties of FGMs. 
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Fig. 14 – Variation of normalized SIF vs. 𝑬𝟏/𝑬𝟐: a/2H= 0.45  -   b)  a/2H=0.50   -   c)  a/2H=0.55 
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4 Conclusion  

In this paper, the mixed-mode stress intensity factors in functionally graded materials subject to quasi-static loadings are 

evaluated by means of an extrapolation displacement technique in conjunction with the 2D finite element analyses. The 

obtained results allow us to deduce the following conclusions: 

 The singular elements proposed by Barsoum are investigated to consider the singularity of stress and deformations 

fields around the crack tip. 

 The variations continue of the materials properties has been successfully incorporated in finite element code, using 

the variation of Young's modulus along the radial direction and the thickness direction, respectively. 

 The extrapolation displacement technique proves to be an accurate and robust scheme in the numerical examples 

where various types of material gradation, exponential and linear are considered. The FEM results showed very good 

agreement with other published results. 

 The material gradation and the crack direction may have a significant influence on SIFs under mixed mode loading. 

Based on the FE numerical results of the present paper, it was recommended to add further development in the software 

to analysed the SIFs for orthotropic FGMs subjected to thermomechanics, dynamic or under other loading conditions. In 

addition, the simple formulation of present method also makes it possible to develop a methodology for solving the crack 

propagation problems under plane stress and plane strain conditions. 

Appendix A. User subroutine  

!-------------Extrapolation technique------------------------------------  

/POST1 

*GET,xx2,kp,8,LOC,X  

*GET,yy2,kp,8,LOC,y 

*status,xx2 

*status,yy2 

LOCAL,11,0,xx2,yy2,0,alpha1, , ,1,1, 

CSYS,11,  

RSYS,11  

!-------------Extrapolation technique DET-------- 

*if,technique,eq,1,then  

*GET,UX_9,NODE,9,U,X 

*GET,UY_9,NODE,9,U,Y 

 *GET,UX_7,NODE,7,U,X 

*GET,UY_7,NODE,7,U,Y 

  *GET,UX_10,NODE,10,U,X   

*GET,UY_10,NODE,10,U,Y 

  *GET,UX_6,NODE,6,U,X   

*GET,UY_6,NODE,6,U,Y   

E_tip=(E_all)*EXP(alpha*a) 

 *SET,nuxy,0.3 

*SET,EX,E_tip ! 

!*SET,HH,0.4  !H Rayon de la rossette 

*SET,K_DP,3-(4*0.3) 

*SET,K_CP,(3-0.3)/(1+0.3) 

*SET,AA,EX/(3*(1+0.3)*(1+k_DP)) 

*SET,B,SQRT(6.28/HH) 

*SET,C11,4*(UY_9-UY_7) 
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*SET,C22,4*(UX_9-UX_7) 

*SET,D11,0.5*(UY_10-UY_6) 

*SET,D22,0.5*(UX_10-UX_6) 

*SET,KI, AA*B*(C11-D11) 

*SET,KII,AA*B*(C22-D22) 

!-------------Correlation technique DCT-------- 

E_tip=(E_all)*EXP(alpha*a) 

*status,E_tip 

!E_tip=1.0789 

*GET,UX_b,NODE,9,U,X 

*GET,UY_b,NODE,9,U,Y 

 *GET,UX_d,NODE,7,U,X 

*GET,UY_d,NODE,7,U,Y 

  *GET,UX_c,NODE,10,U,X   

*GET,UY_c,NODE,10,U,Y 

  *GET,UX_e,NODE,6,U,X   

*GET,UY_e,NODE,6,U,Y   

 *SET,nuxy,0.3 

!------------------------------------- 

*SET,K_DP,3-(4*0.3)        !plane strain 

*SET,K_CP,(3-0.3)/(1+0.3)  !plane stress 

!------------------------------------- 

*SET,AA,(E_tip)/(2*(1+0.3)*(1+k_DP)) 

*SET,BB,SQRT(6.28/HH)  

*SET,C1,4*((UY_b)-(UY_d))  ! i-1 

*SET,C2,4*((Ux_b)-(Ux_d))  ! i-1 

*SET,D1,((UY_c)-(UY_e))  ! i-2 

*SET,D2,((Ux_c)-(Ux_e))  ! i-2 

*SET,KI, AA*BB*(C1-D1) 

*SET,KII,AA*BB*(C2-D2) 

!---------------------------------------------- 
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