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ABSTRACT: This paper discusses the mathematical analogy of the Open-Source Energy Modeling 

System (OSeMOSYS). It describes the algebraic formulation of the model by providing a plain 

description of sets, parameters and variables used in each block. As statisticians and economists, we 

are interested in mathematical development more than code implementation, so the added value of this 
paper is that it treats the detailed algebraic formulation which is developed from its latest full source 
code., we provide each block with a plain description of sets, parameters and variables used in each 
block of the OSeMOSYS with the detailed equations by making the passage from conditions used in 

the source code to simple solutions in order to have simple equations. 
Keywords : OSeMOSYS; Energy modeling system; Bottom-up; Algebraic formulation; Open source 

JEL Classification: C020; C610; Q40 

1. INTRODUCTION: 

OSeMOSYS (open-source modelling system) is a long-run integrated assessment and 

energy planning. It has been used to create models of energy systems. It can focus on detailed 

power representations, or multi-resource (material, financial, all energy) systems. 

“OSeMOSYS is designed to be easily updated and modified to suit the needs of a particular 

analysis. To provide this capability, the model is being developed in a series of component 

‘blocks’ of functionality”(Howells et al., 2011). It is a bottom-up model based on a linear 

programming with an objective function (block1) at the contrary to the rest of blocks: Costs, 

Storage, Capacity adequacy, Energy balance, Constraints and Emissions. Each block is also 

subdivided into several degrees of abstraction, as follows:  
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- Plain English description 

- Mathematical Analogy  

- Micro Implementation 

 

Figure N°1: Current OSeMOSYS ‘blocks’ and levels of abstraction. 

 

Source : (Howells et al., 2011) 

In our paper we will treat the detailed algebraic formulation which is developed from 
its latest full source code. The paper begins with an introduction and a literature review of 

modeling energy systems and presenting the OSeMOSYS as a bottom-up modeling energy 
system. Also, we provide each block with a plain description of sets, parameters and variables 
used in each block of the OSeMOSYS with the detailed equations by making the passage 
from conditions used in the source code to simple solutions in order to have simple equations 
for each block. Using the latest documentation of OSeMOSYS (OSeMOSYS Documentation 
Release 0.0.1 KTH-DESA, 2021) and from the code source published inside we have 

developed the algebraic formulation of the equations of each block to help statisticians and 
economists to get a better comprehension of the OSeMOSYS model.   

 

2. LITERATURE REVIEW: 

Energy system models can be considered as a subcategory of partial equilibrium models 
used to assess costs of reducing emissions; no need to represent impact by focusing on 
emissions rather than climate change (Doukas et al., 2019). OSeMOSYS as one of Energy 

system models based on the linear programming to minimize the total discounted cost was 
developed for the first time by Howells in its reference article (Howells et al., 2011) 
discussing its ethos, structure and development. OSeMOSYS expands in the second paper of 
Howells with Welsch by describing how ‘blocks of functionality’ may be added to represent 
variability in electricity generation, a prioritisation of demand types, shifting demand, and 
storage options. The paper demonstrates the flexibility and ease-of-use of OSeMOSYS with 

regard to modifications of its code (Welsch et al., 2012). 
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Many of studies are done using OSeMOSYS which are published in its official website 
containing also the data used in each case. We also have the github of the OSeMOSYS. In 
the appendix of (Howells et al., 2011) we have the first algebraic formulation but it is not 

refreshed so in this paper we will do a reverse method to obtain the latest algebraic 
reformulation from equations of the code source published in the github and in (OSeMOSYS 
Documentation Release 0.0.1 KTH-DESA, 2021). 

3. Mathematical analogy of OSeMOSYS : 

3.1. Objectif function 

This particular equation represents the global objective of the model. The main objective 
of OSeMOSYS is to minimize the total system cost over the entire model period. This can 

be achieved through using Sets and Variables, for instance, in Sets we have Year (y) and 
Region (r). And in Variables we have positive costing variables which is represented in 
TotalDiscountedCost[r,y]. 

3.1.1. 𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞𝐂𝐨𝐬𝐭 =  ∑ TotalDiscountedCost[r, y]r,y  

3.2. Rate of demand 

The equation provided below is utilized to derive the term RateOfDemand. From the 
user-provided data for SpecifiedAnnualDemand and SpecifiedDemandProfile. For each 
combination of commodity, TimeSlice and Year, the RateOfDemand is defined. Through the 
use of Sets, Parameters and Variables. In Sets we have Year (y), Region (r), TimeSlice (I) 

and Fuel (f). Moreover, in Parameters we have Global parameters in which YearSplit[l,y] 
must be strictly positive, and within parameters we have Demands as well as 
SpecifiedAnnualDemand[r,f,y] and SpecifiedDemandProfile[r,f,l,y].  

3.2.1. 𝐑𝐚𝐭𝐞𝐨𝐟𝐃𝐞𝐦𝐚𝐧𝐝[𝐫, 𝐥, 𝐟, 𝐲] =  SpecifiedAnnuualDemand[r, f, y]  ×
 SpecifedDemandProfil[r, f, l, y] / YearSplit[l, y] 

3.3. Capacity Adequacy A (CAa) 

Used to compute total capacity of each technology for each year based on residual 

capacity from before the model period (ResidualCapacity), AccumulatedNewCapacity 
during the modelling period, and NewCapacity built in each year. The Capacity is next 
checked to see if it meets the RateOfTotalActivity in each TimeSlice and Year. There is also 
a constraint dependent on the size, or capacity, of each Technology unit 
(CapacityOfOneTechnologyUnit). 
This sets down that the capacity of a particular Technology can only be a multiple of the user-

defined CapacityOfOneTechnologyUnit. It is only provided through using Sets such as Year 
(y), Region (r), TimeSlice (I), Technology (t) and Mode_Of_Operation (m). Also through 
using Parameters, which include Performance and Capacity constraints, first, we have 
Performance such as OperationalLife[r,t]  ResidualCapacity[r,t,y], 
CapacityToActivityUnit[r,t] and CapacityFactor[r,t,l,y], second, in  Capacity contsraints 

we use CapacityOfOneTechnologyUnit[r,t,y] which must not be equal to zero. Furthermore, 

in Variables  we have Acitivity variables  and Capacity variables which are positive.  
Activity variables which include RateOfActivity[r,l,t,m,y] and RateOfTotalActivity[r,t,l,y]. 
And in Capacity variables we have NewCapacity[r,t,y],TotalCapacityAnnual[r,t,y],and  
NumberOfNewTechnologyUnits[r,t,y]. 

3.3.1. CAa1_Total NewCapacity 

AccumulatedNewCapacity  [r, t, y] = ∑ 𝑁𝑒𝑤 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦[𝑟, 𝑡, 𝑦𝑦]

𝑦

𝑦𝑦>𝑦−OperationalLifeStorage[r,s]

 

3.3.2. CAa2_Total AnnualCapacity 

TotalCapacityAnnual [r, t, y] =  AccumulatedNewCapacity  [r, t, y] +  ResidualCapacity  [r, t, y] 
3.3.3. CAa3_Total ActivityofEachTechnology 
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RateOfTotalActivity [r, t, l, y]  =  ∑ 𝑅𝑎𝑡𝑒𝑂𝑓𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑚

[r, l, t, m, y] 

3.3.4. CAa4_Constraint-Capacity 

RateOfTotalActivity [r, t, l, y]
≤ 𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐴𝑛𝑛𝑢𝑎𝑙[r, t, y]  × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 [r, t, l, y]
× 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑜𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑈𝑛𝑖𝑡[r, t] 

3.3.5. CAa5_TotalNewCapacity 

NewCapacity[r, t, y] = CapacityOfOneTechnologyUnit[r, t, y] × NumberOfNewTechnology[r, t, y] 
 

3.4. Capacity Adequacy B (CAb) 

Guarantees that appropriate capacity of technologies exist to meet at least the average 
yearly demand. Through using Sets as well as  Parameters. In Sets we use Year (y), Region 

(r), TimeSlice (I) and Technology (t). In Parameters such as Global parameters  which 
include YearSplit[l,y]. And in Performance we use CapacityToActivityUnit[r,t], 
CapacityFactor[r,t,l,y] and AvailabilityFactor[r,t,y].  In Variables we have Activity 

variables and Capacity variables which are positive. Activity variables such as 

RateOfTotalActivity[r,t,l,y], and  Capacity variables  like TotalCapacityAnnual[r,t,y]. 
3.4.1. Cab1_PlannedMaintenance 

∑(𝑅𝑎𝑡𝑒𝑂𝑓𝑇𝑜𝑡𝑎𝑙𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦[r, t, l, y] × 𝑌𝑒𝑎𝑟𝑆𝑝𝑙𝑖𝑡[𝑙 , 𝑦])

𝑙

 

≤  ∑(𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐴𝑛𝑛𝑢𝑎𝑙[r, t, y] × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 [r, t, l, y]

𝑙

× 𝑌𝑒𝑎𝑟𝑆𝑝𝑙𝑖𝑡[𝑙 , 𝑦]) × 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟[r, t, y]
× 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑜𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑈𝑛𝑖𝑡 [r, t] 

3.5. Energy Balance A (EBa) 

Guarantees that each commodity's demand is met in each TimeSlice. This can be 
achieved by using Sets such as Year (y), Region (r), TimeSlice (l), Fuel (f), Technology (t) 
and Mode_Of_Operation (m). Also by the use of Parameters which include Global 

Parameters  and Performance. In Global Parameters we use YearSplit[l,y] , 
TradeRoute[r,rr,f,y] And in Performance in which must not be equal to a zero, we have 
OutputActivityRatio[r,t,f,m,y] and InputActivityRatio[r,t,f,m,y].  Moreover, we use 
Variables which are positive including Activity Variables like 
RateOfProductionByTechnologyByMode[r,l,t,m,f,y], RateOfActivity[r,l,t,m,y], 
RateOfProductionByTechnology[r,l,t,f,y], RateOfProduction[r,l,f,y], 

RateOfUseByTechnologyByMode[r,l,t,m,f,y], RateOfUseByTechnology[r,l,t,f,y], 
RateOfUse[r,l,f,y], Use[r,l,f,y], Trade[r,rr,l,f,y] and Production[r,l,f,y].  Also, we have 
Demands like RateOfDemand[r,l,f,y] and Demand[r,l,f,y]. 

3.5.1. EBa1_RateOfFuelProduction1 

RateOfProductionByTechnologyByMode[r, l, t, m, f, y]

= RateOfActivity[r, l, t, m, f, y] × OutputActivityRatio[r, l, t, m, f, y] 
3.5.2. EBa2_RateOfFuelProduction2 

RateOfProductionByTechnology[r, l, t, f, y]

=  ∑ RateOfProductionByTechnologyByMode[r, l, t, m, f, y]

m

 

3.5.3. EBa3_RateOfFuelProduction3 

RateOfProduction[r, f, l, y] = ∑ RateOfProductionByTechnology[r, l, t, f, y]

t

 

3.5.4. EBa4_RateOfFuelUse1 
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RateOfUseByTechnologyByMode[r, l, t, m, f, y]
= RateOfActivity[r, l, t, m, y] × InputActivityRatio[r, t, m, f, y] 

3.5.5. EBa5_RateOfFuelUse2 

RateOfUseByTechnology [r, l, t, f, y] = ∑ RateOfUseByTechnologyByMode[r, l, t, m, f, y]

m

 

3.5.6. EBa6_RateOfFuelUse3 

RateOfUse[r, l, f, y] = ∑ RateOfUseByTechnology[r, l, t, f, y]

t

 

3.5.7. EBa7_EnergyBalanceEachTS1 

Production[r, l, f, y] = RateOfProduction[r, l, f, y] × YearSplit[l, y] 
3.5.8. EBa8_EnergyBalanceEachTS2 

Use[r, l, f, y] = RateOfUse[r, l, f, y] × YearSplit[l, y] 
3.5.9. EBa9_EnergyBalanceEachTS3 

Demand[r, l, f, y] = RateOfDemand[r, l, f, y] × YearSplit[l, y] 
3.5.10. EBa10_EnergyBalanceEachTS4 

Trade[r, rr, l, f, y] = − Trade[rr, r, l, f, y] 
3.5.11. EBa11_EnergyBalanceEachTS5 

Production[r, l, f, y]
≥  Demand[r, l, f, y] + Use[r, l, f, y]

+ ∑ Trade[r, rr, l, f, y] × TradeRate [r, rr, l, f, y]

rr

 

3.6. Energy Balance B (EBb) 

Guarantees that each commodity's demand is met each year. This can be achieved 
through using Sets, Parameters and Variables. In Sets we have Year (y), Region (r), 
TimeSlice (I) and Fuel (f). Moving on, in Parameters we have Global Parameters such as 
TradeRoute[r,rr,f,y] and in Demands we use AccumulatedAnnualDemand[r,f,y]. Finally in 
Variables we have Activity variables which are positive, such as, Use[r,l,f,y], 
Trade[r,rr,l,f,y], Production[r,l,f,y], TradeAnnual[r,rrf,y], ProductionAnnual[r,f,y] and 

UseAnnual[r,f,y]. 
3.6.1. EBb1_EnergyBalanceEachYear1 

ProductionAnnual[r, f, y] = ∑ Production[r, l, f, y]

l

 

3.6.2. EBb2_EnergyBalanceEachYear2 

UseAnnual[r, f, y] = ∑ Use[r, l, f, y]

l

 

3.6.3. EBb3_EnergyBalanceEachYear3 

TradeAnnual[r, rr, f, y] = ∑ Trade[r, rr, l, f, y]

l

 

3.6.4. EBb4_EnergyBalanceEachYear4 

 ProductionAnnual[r, f, y]

≥  UseAnnual[r, f, y] + ∑(TradeAnnual [r, l, f, y] × TradeRoute [r, rr, l, f, y]

rr

)

+ AccumulatedAnnualDemand [r, f, y] 
3.7. Accounting Technology Production Use (Acc) 

ProductionByTechnology, UseBytechnology, 
TotalAnnualTechnologyActivityByMode, and ModelPeriodCostByRegion are accounting 
equations used to generate specific intermediate variables. This can only be achieved through 
using Sets such as YEAR (y), REGION (r), TIMESLICE (I), FUEL(f), TECHNOLOGY (t) 
and MODE_OF_OPERATION (m). Also through the use of Parameters we have Global 
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parameters such as YearSplit[l,y]. Finally Through the use of Variables in which we have 

Activity variables that are positive including RateOfActivity[r,l,t,m,y], 
RateOfProductionByTechnology[r,l,t,f,y], RateOfUseByTechnology[r,l,t,f,y], 

ProductionByTechnology[r,l,t,f,y], UseByTechnology[r,l,t,f,y] and 
TotalAnnualTechnologyActivityByMode[r,t,m,y]. As well as using Costing variables  such 
as ModelPeriodCostByRegion[r] and TotalDiscountCosts[r,y]. 

3.7.1. Acc1_FuelProductionByTechnology 

ProductionByTechnology [r, l, t, f, y] = RateOfProductionByTechnology[r, l, t, f, y] × YearSplit [l, y] 
3.7.2. Acc2_FuelUseByTechnology 

UseByTechnology [r, l, t, f, y] = RateOfUseByTechnology[r, l, t, f, y] × YearSplit [l, y] 
3.7.3. Acc3_AverageAnnualRateOfActivity 

TotalAnnualTechnologyActivityByMode[r, t, m, y]

= ∑(RateOfActivity[r, l, t, m, y] × YearSplit[l, y])

l

 

3.7.4. Acc4_ModelPeriodCostByRegion 

ModelPeriodCostByRegion[r] = ∑ TotalDiscountCosts [r, y]

y

 

3.8. Storage Equations (S) 

This can only be achieved through using Sets Year (y), Region (r), TimeSlice (I), 
Mode_Of_Operation (m), Season (ls), DayType (ld), DailyTimeBracket (lh) and Storage (s). 
Morevover, we use Parameters, first we have Global parameters which includes 

YearSplit[l,y], DaySplit[lh,y], Conversionls[l,ls], Conversionld[ld,l], Conversionlh[lh,l] and 
DaysInDayType[ls,ld,y].  Second, we have Storage in which they are strictly positive, we 
use TechnologyToStorage[r,t,s,m], TechnologyFromStorage[r,t,s,m],  and 
StorageLevelStart[r,s]. Finally in Variables we use Activity variables which are positive 
like RateOfActivity[r,l,t,m,y] and in Storage Variables we have  
RateOfStorageCharge[r,s,ls,ld,lh,y], RateOfStorageDischarge[r,s,ls,ld,lh,y], 

NetChargeWithinYear[r,s,ls,ld,lh,y] and NetChargeWithinDay[r,s,ls,ld,lh,y]. And other 
storage variables which are positive like StorageLevelYearStart[r,s,y], 
StorageLevelSeasonStart[r,s,ls,y], StorageLevelDayTypeStart[r,s,ls,ld,y], 
StorageLevelYearFinish[r,s,y] and StorageLevelDayTypeFinish[r,s,ls,ld,y]. 

3.8.1. S1_RateOfStorageCharge 

RateOfStorageCharge[r, s, ls, ld, lh, y]

= ∑ RateOfActivity[r, l, t, m, y] × TechnologyToStorage [r, t, s, m]

t,m,l

× Conversionls[l, ls] × Conversionld [l, ld] × Conversionlh [l, lh] 
3.8.2. S2_RateOfStorageDischarge 

RateOfStorageDischarge[r, s, ls, ld, lh, y]

= ∑(RateOfActivity[r, l, t, m, y] × TechnologyFromStorage[r, t, s, m]

t,m,l

× Conversionls[l, ls] × Conversionld[l, ld] × Conversionlh[l, lh]) 
3.8.3. S3_NetChargeWithinYear 

𝑁𝑒𝑡𝐶ℎ𝑎𝑟𝑔𝑒𝑊𝑖𝑡ℎ𝑖𝑛𝑌𝑒𝑎𝑟[𝑟, 𝑠, 𝑙𝑠, 𝑙𝑑, 𝑙ℎ, 𝑦]

= ∑(𝑅𝑎𝑡𝑒𝑂𝑓𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶ℎ𝑎𝑟𝑔𝑒[r, s, ls, ld, lh, y]

𝑙

− 𝑅𝑎𝑡𝑒𝑂𝑓𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 [r, s, ls, ld, lh, y]) × 𝑌𝑒𝑎𝑟𝑆𝑝𝑙𝑖𝑡[𝑙, 𝑦]

× 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑙𝑠[𝑙, 𝑙𝑠] × 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑙𝑑[𝑙, 𝑙𝑑] × 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑙ℎ[𝑙, 𝑙ℎ] 
3.8.4. S4_NetChargeWithinDay 
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𝑁𝑒𝑡𝐶ℎ𝑎𝑟𝑔𝑒𝑊𝑖𝑡ℎ𝑖𝑛𝐷𝑎𝑦 [𝑟, 𝑠, 𝑙𝑠, 𝑙𝑑, 𝑙ℎ, 𝑦]
= (𝑅𝑎𝑡𝑒𝑂𝑓𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶ℎ𝑎𝑟𝑔𝑒[r, s, ls, ld, lh, y]  
− 𝑅𝑎𝑡𝑒𝑂𝑓𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒[r, s, ls, ld, lh, y] ) × 𝐷𝑎𝑦𝑆𝑝𝑙𝑖𝑡[lh, y] 

3.8.5. S5_and_S6_StorageLevelYearStart 

If y = min (yy) ∶ StorageLevelStart[r, s]   

else ∶  StorageLevelYearStart[r, s, y − 1] + ∑ NetChargeWithinYear[r, s, ls, ld, lh, y − 1] 

3.8.6. S7_and_S8_StorageLevelYearFinish 

If y < max(yy)  StorageLevelYearStart[r, s, y + 1]   

else ∶  StorageLevelYearStart[r, s, y] + ∑ NetChargeWithinyear [r, s, ls, ld, lh, y] 

3.8.7. S9_and_S10_StorageLevelSeasonStart 

If Ls = min(LsLs) ∶ StorageLevelYearStart[r, s, y]   

else ∶  StorageLevelSeasonStart[r, s, ls − 1, y] + ∑ NetChargeWithinYear[r, s, ls − 1, ld, lh, y] 

3.8.8. S11_and_S12_StorageLevelDayTypeStart 

If Ld = min(LdLd) ∶ StorageLevelSeasonStart[r, s, ls, y]   
else ∶  StorageLevelDayTypeStart[r, s, ls, ld − 1, y] 

+ ∑ NetChargeWithinDay[r, s, ls, ld − 1, lh, y] × DaysInDayType[ls, ld − 1, y] 

3.8.9. S13_and_S14_ and_S15_StorageLevelDayTypeFinish 

If Ls = max(LsLs)  && Ld = max(LdLd): StorageLevelYearFinish[r, s, y]   
else If Ld = max(LdLd):  StorageLevelSeasonStart [r, s, ls + 1, y]       

else:  StorageLevelDayTypeFinish[r, s, ls, ld + 1, y]

− ∑ NetChargeWithinDay[r, s, ls, ld + 1, lh, y] × DaysInDayType[ls, ld

+ 1, y]    
3.9. Storage Constraints (SC) 

This can only be achieved through using Sets such as Year (y), Region (r), 
TimeSlice (I), Season (ls), DayType (ld), DailyTimeBracket (lh) and Storage (s). As well as 
using Parameters which include Storage such as StorageMaxChargeRate[r,s] and 
StorageMaxDischargeRate[r,s]. Finally by the use of Variables which are positive including 
Storage variables like NetChargeWithinDay[r,s,ls,ld,lh,y], 

RateOfStorageCharge[r,s,ls,ld,lh,y], RateOfStorageDischarge[r,s,ls,ld,lh,y], 
StorageLevelDayTypeStart[r,s,ls,ld,y], StorageLevelDayTypeFinish[r,s,ls,ld,y], 
StorageLowerLimit[r,s,y] and StorageUpperLimit[r,s,y]. 

3.9.1. SC1_LowerLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInFi

rstWeekConstraint 

StorageLevelDayTypeStart[r, s, ls, ld, y])

+ ∑ (NetChargeWithinDay [r, s, ls, ld, lhlh, y]) − StorageLowerLimit[r, s, y]

Lh

LhLh

≥ 0 
3.9.2. SC1_UpperLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInFi

rstWeekConstraint 

StorageLevelDayTypeStart[r, s, ls, ld, y])

+ ∑ (NetChargeWithinDay [r, s, ls, ld, lhlh, y]) − StorageUpperLimit[r, s, y]  

Lh

LhLh

≤ 0 
3.9.3. SC2_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInFirstWe

ekConstraint 
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If Ld > min(LdLd) ∶ StorageLevelDayTypeStart[r, s, ls, ld, y]

− ∑ (NetChargeWithinDay[r, s, ls, ld − 1, lhlh, y])

Lh

LhLh

− StorageLowerLimit[r, s, y] ≥ 0 
3.9.4. SC2_UpperLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInFirstWe

ekConstraint 

If Ld > min(LdLd) ∶ StorageLevelDayTypeStart[r, s, ls, ld, y]

− ∑ (NetChargeWithinDay[r, s, ls, ld − 1, lhlh, y])

Lh

LhLh

− StorageUpperLimit[r, s, y]  ≤ 0 
3.9.5. SC3_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInLastWe

ekConstraint 

StorageLevelDayTypeFinish[r, s, ls, ld, y])

− ∑ (NetChargeWithinDay[r, s, ls, ld, lhlh, y]) − StorageLowerLimit[r, s, y]  

Lh

LhLh

≥ 0 
3.9.6. SC3_UpperLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInLastWe

ekConstraint 

StorageLevelDayTypeFinish [r, s, ls, ld, y])

− ∑ (NetChargeWithinDay [r, s, ls, ld, lhlh, y]) − StorageUpperLimit[r, s, y]  

Lh

LhLh

≤ 0 
3.9.7. SC4_LowerLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInL

astWeekConstraint 

If Ld > min(LdLd) ∶ StorageLevelDayTypeFinish[r, s, ls, ld − 1, y]

− ∑ (NetChargeWithinDay[r, s, ls, ld, lhlh, y]) − StorageLowerLimit[r, s, y]  

Lh

LhLh

≥ 0 
3.9.8. SC4_UpperLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInL

astWeekConstraint 

If Ld > min(LdLd) ∶ StorageLevelDayTypeFinish [r, s, ls, ld − 1, y]

− ∑ (NetChargeWithinDay [r, s, ls, ld, lhlh, y]) − StorageUpperLimit[r, s, y]  

Lh

LhLh

≤ 0 
3.9.9. SC5_MaxChargeConstraint 

RateOfStorageCharge [r, s, ls, ld, lh, y] ≤ StorageMaxChargeRate [r, s] 
3.9.10. SC6_MaxDischargeConstraint 

RateOfStorageDischarge[r, s, ls, ld, lh, y] ≤ StorageMaxDichargeRate[r, s] 
 

3.10. Storage Investments (SI) 

Calculating the total discounted capital costs spent in each year for each storage 

technology. This can only be achieved through the use of Sets Year (y), Region (r) and 
Storage (s). As well as using Parameters which include Global parameters such as 

DiscountRate[r], DepreciationMethod[r]  And in Storage we have 
OperationalLifeStorage[r,s], ResidualStorageCapacity[r,s,y], MinStorageCharge[r,s,y] and 
CapitalCostStorage[r,s,y]. Finally by the use of Variables which are positive including 
Storage variables such as StorageLowerLimit[r,s,y], StorageUpperLimit[r,s,y], 
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AccumulatedNewStorageCapacity[r,s,y], NewStorageCapacity[r,s,y], 
CapitalInvestmentStorage[r,s,y], DiscountedCapitalInvestmentStorage[r,s,y], 
SalvageValueStorage[r,s,y], DiscountedSalvageValueStorage[r,s,y], and 

TotalDiscountedStorageCost[r,s,y]. 
3.10.1. SI1_StorageUpperLimit 

StorageUpperLimit[r, s, y]
= AccumulatedNewStorageCapacity[r, s, y]
+ ResidualStorageCapacity [r, s, y]  

3.10.2. SI2_StorageLowerLimit 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒Lower𝐿𝑖𝑚𝑖𝑡[𝑟, 𝑠, 𝑦] = MinStorageCharge[r, s, y] × StorageUpperLimit[r, s, y] 
3.10.3. SI3_TotalNewStorage 

AccumulatedNewStorageCapacity[r, s, y]

= ∑ NewStorageCapacity[r, s, yy]

y

yy>y−OperationalLifeStorage[r,s]

 

3.10.4. SI4_UndiscountedCapitalInvestmentStorage 

CapitalInvestmentStorage[r, s, y] = CapitalCostStorage [r, s, y] ×  NewStorageCapacity[r, s, y]  
3.10.5. SI5_DiscountingCapitalInvestmentStorage 

DiscountedCapitalInvestmentStorage [r, s, y] =
CapitalInvestmentStorage[r, s, y]

(1 + DiscountRate [r]) y−min(yy)  

3.10.6. SI6_SalvageValueStorageAtEndOfPeriod1 

When y + OperationalLifeStorage[r, s] − 1 ≤ max(yy): SalvageValueStorage [r, s, y] = 0 
3.10.7. SI7_SalvageValueStorageAtEndOfPeriod2 

If  
DepreciationMethod[r] = 1 

 && (y + OperationalLifeStorage[r, s] − 1)  > max (yy)  
&& DiscountRate [r] = 0 

DepreciationMethod[r] = 2  
&& (y + OperationalLifeStorage[r, s] − 1)  > max(yy)  

: SalvageValueStorage [r, s, y] = CapitalInvestmentStorage[r, s, y] × (
1−( max(yy)– y+1)

OperationalLifeStorage[r,s]
)  

3.10.8. SI8_SalvageValueStorageAtEndOfPeriod3 

If  
DepreciationMethod[r] = 1  

&& (y + OperationalLifeStorage [r, s] − 1)  > max (yy)  
&& DiscountRate [r] > 0 

: SalvageValueStorage[r, s, y] = 
CapitalInvestmentStorage[r, s, y] × 

(1 − (
(1 + DiscountRate[r])max(yy)–y+1 − 1

(1 + DiscountRate[r])OperationalLifeStorage[r,s] − 1
)) 

3.10.9. SI9_SalvageValueStorageDiscountedToStartYear 

DiscountedSalvageValueStorage [r, s, y] =  
SalvageValueStorage[r, s, y]

(1 + DiscountRate [r])(max(yy)−min(yy)+1)
 

3.10.10. SI10_TotalDiscountedCostByStorage 

TotalDiscountedStorageCost [r, s, y]
= DiscountedCapitalInvestmentStorage[r, s, y]
− DiscountedSalvageValueStorage[r, s, y] 

3.11. Capital Costs (CC) 

Calculating the total discounted capital cost spent in each technology for each year. 
This can be only achieved through the use of Sets, Parameters and Variables. In Sets we 
have Year (y), Region (r) and Technology (t). In addition to using Parameters we have 
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Global parameters like DiscountRate[r] and Technology costs   such as CapitalCost[r,t,y]. 
Finally we use Variables which are positive including Capacity variables like 
NewCapacity[r,t,y] and Costing variables such as CapitalInvestment[r,t,y] and  

DiscountedCapitalInvestment[r,t,y] 
3.11.1. CC1_UndiscountedCapitalInvestment 

CapitalInvestment[r, t, y] = CapitalCost[r, t, y] × NewCapacity[r, t, y]  
3.11.2. CC2_DiscountingCapitalInvestment 

DiscountedCapitalInvestment [r, t, y] =
CapitalInvestment[r, t, y]

(1 + DiscountRate[r])(y− min(yy)) 

3.12. Salvage Value (SV) 

Calculates the portion of the initial capital cost that can be retrieved at the end of a 
technologies operational life. One of two depreciation methodologies, straight line or sinking 
fund, can be used to compute the salvage value. This operation can be accomplished through 
the use of Sets in which we have Year (y), Region (r) and Technology (t), and Storage (s). 
Additionally through the use of Parameters which involve Global parameters such as 

DiscountRate[r] which is strictly positive and DepreciationMethod[r], Techonoly costs like 
CapitalCost[r,t,y] and in Performance we have  OperationalLifeStorage[r,s]. By ultimately 
using Variables which are positive we have Capacity variables like NewCapacity[r,t,y] and 
Costing variables such as SalvageValue[r,t,y] and DiscountedSalvageValue[r,t,y]. 

3.12.1. SV1_SalvageValueAtEndOfPeriod1 

If  
DepreciationMethod[r] = 1  

&& (y + OperationalLifeStorage [r, s] − 1)  > max (yy)  
&& DiscountRate [r] > 0 

 SalvageValue[r, t, y] = CapitalCost[r, t, y] × NewCapacity[r, t, y] × 

(1 − (
((1 + DiscountRate[r])max(yy) − y+1) − 1)

((1 + DiscountRate[r])OperationalLife[r,t] − 1)
 

3.12.2. SV2_SalvageValueAtEndOfPeriod2 

If  
DepreciationMethod[r] = 1  

&& (y + OperationalLifeStorage [r, s] − 1)  > max (yy)  
&& DiscountRate [r] = 0 

DepreciationMethod[r] = 2  
&& (y + OperationalLifeStorage[r, s] − 1)  > max(yy)  

SalvageValue[r, t, y] = CapitalCost[r, t, y] × NewCapacity[r, t, y] × (
(max(yy)– y + 1)

OperationalLife[r, t]
) 

3.12.3. SV3_SalvageValueAtEndOfPeriod3 

If  
(y + OperationalLifeStorage [r, s] − 1) ≤ max(yy) 

SalvageValue[r, t, y] =  0 
3.12.4. SV4_SalvageValueDiscountedToStartYear 

DiscountedSalvageValue[r, t, y] =
SalvageValue [r, t, y]

(1 + DiscountRate[r])(1+ max(yy)− min(yy)) 

3.13. Operating Costs (OC) 

Calculates each technology's total variable and fixed operational expenses for each 
year. This operation can only be accomplished through the use of Sets which include  Year 
(y), Region (r), Technology (t) and  Mode_Of_Operation (m). Moreover we use Parameters 
in which we have Global parameters such as  DiscountRate[r] which is strictly positive,  

and in  Technology costs  we have VariableCost[r,t,m,y] and FixedCost[r,t,y]. Eventually 
we use Variables which are positive including Activity variables such as 
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TotalAnnualTechnologyActivityByMode[r,t,m,y], Capacity variables we have 
TotalCapacityAnnual[r,t,y] and Costing variables we use 
AnnualVariableOperatingCost[r,t,y], AnnualFixedOperatingCost[r,t,y], OperatingCost[r,t,y] 

and DiscountedOperatingCost[r,t,y]. 
3.13.1.  OC1_OperatingCostsVariable 

AnnualVariableOperatingCost[r, t, y]

= ∑(TotalAnnualTechnologyActivityByMode[r, t, m, y]

m

× VariableCost[r, t, m, y]) 
3.13.2. OC2_OperatingCostsFixedAnnual 

AnnualFixedOperatingCost[r, t, y] = TotalCapacityAnnual[r, t, y] × FixedCost[r, t, y]  
3.13.3. OC3_OperatingCostsTotalAnnual 

OperatingCost[r, t, y]
= AnnualFixedOperatingCost[r, t, y] + AnnualVariableOperatingCost[r, t, y] 

3.13.4. OC4_DiscountedOperatingCostsTotalAnnual 

DiscountedOperatingCost [r, t, y] =
OperatingCost[r, t, y]

(1 + DiscountRate[r])(y−min(yy)+0.5) 

3.14. Total Discounted Costs (TDC) 

Calculating the total discounted system cost throughout the entire model period to 
give the TotalDiscountedCost. In the objective function of the model, this is the variable that 
is minimised. This operation is attained by using Sets such as Year (y), Region (r), 
Technology (t) and Storage (s). In this same operation we use Variables which are positive 
including Storage variables like TotalDiscountedStorageCost[r,s,y] and Costing including 
variablesDiscountedOperatingCost[r,t,y], DiscountedCapitalInvestment[r,t,y], 

TotalDiscountedCostByTechnology[r,t,y], DiscountedSalvageValue[r,t,y], 
TotalDiscountedCost[r,y] and in Reserve Margin variables we use 
DiscountedTechnologyEmissionsPenalty[r,t,y]. 

3.14.1. TDC1_TotalDiscountedCostByTechnology 

TotalDiscountedCostByTechnology [r, t, y]
= DiscountedOperatingCost[r, t, y] + DiscountedCapitalInvestment[r, t, y]
+ DiscountedTechnologyEmissionsPenalty [r, t, y]
− DiscountedSalvageValue[r, t, y]  

3.14.2. TDC2_TotalDiscountedCost 

TotalDiscountedCost[r, y]

= ∑ TotalDiscountedCostByTechnology[r, t, y]

t

+ ∑ TotalDiscountedStorageCost[r, s, y]

s

 

3.15. Total Capacity Constraints (TCC) 

Guarantees that each technology's total capacity is greater than or less than the user-
defined parameters TotalAnnualMinCapacityInvestment and 
TotalAnnualMaxCapacityInvestment in each year. This operation can be accomplished 
through the use of Sets like Year (y) Region (r), and Technology (t). Also through the use of 
Parameters which are strictly positive including Capacity constraints such as 

TotalAnnualMaxCapacity[r,t,y] and TotalAnnualMinCapacity[r,t,y]. Lastly by the use of 
Variables  which are positive such as   Capacity variables  like TotalCapacityAnnual[r,t,y]. 

3.15.1. TCC1_TotalAnnualMaxCapacityConstraint 

TotalCapacityAnnual[r, t, y]  ≤  TotalAnnualMaxCapacity [r, t, y] 
3.15.2. TCC2_TotalAnnualMinCapacityConstraint 

TotalCapacityAnnual[r, t, y]  ≥ TotalAnnualMinCapacity [r, t, y] 
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3.16. New Capacity Constraints (NCC) 

Guarantees that each year's new capacity for each technology deployed is larger than 
or less than the user-defined parameters TotalAnnualMinCapacityInvestment and 

TotalAnnualMaxCapacityInvestment, accordingly. This process can be only accomplished 
through the use of Sets such as  Year (y), Region (r) , and Technology (t). In addition to the 
use of Parameters which are strictly positive including Investment constraints 
TotalAnnualMaxCapacityInvestment[r,t,y] and  TotalAnnualMinCapacityInvestment[r,t,y]. 
Ulimately through the use of Variables which are positive including  Capacity variables 
NewCapacity[r,t,y]. 

3.16.1. NCC1_TotalAnnualMaxNewCapacityConstraint 

NewCapacity[r, t, y] ≤ TotalAnnualMaxCapacityInvestment[r, t, y] 
3.16.2. NCC2_TotalAnnualMinNewCapacityConstraint 

NewCapacity[r, t, y]  ≥ TotalAnnualMinCapacityInvestment[r, t, y] 
3.17. Annual Capacity Constraints (AAC) 

Guarantees that each technology's total annual activity is greater than or less than 

the user-defined parameters TotalTechnologyAnnualActivityLowerLimit and 
TotalTechnologyAnnualActivityUpperLimit, respectively. This process can be attained 
through the use of Sets including Year (y), Region (r), TimeSlice (l) and Technology (t). As 
well as the use of Parameters which include Global parameters like YearSplit[l,y] and 

Activity constraints which are strictly positive such as     

TotalTechnologyAnnualActivityUpperLimit[r,t,y] and 
TotalTechnologyAnnualActivityLowerLimit[r,t,y]. Lastly through the use of Variables 

which are positive including Activity variables we use RateOfTotalActivity[r,t,l,y] and 
TotalTechnologyAnnualActivity[r,t,y]. 

3.17.1. AAC1_TotalAnnualTechnologyActivity 

TotalTechnologyAnnualActivity[r, t, y] = ∑(RateOfTotalActivity[r, t, l, y] × YearSplit[l, y])

l

 

3.17.2. AAC2_TotalAnnualTechnologyActivityUpperLimit 

TotalTechnologyAnnualActivity[r, t, y] ≤ TotalTechnologyAnnualActivityUpperLimit[r, t, y] 
3.17.3. AAC3_TotalAnnualTechnologyActivityLowerLimit  

TotalTechnologyAnnualActivity[r, t, y]  ≥  TotalTechnologyAnnualActivityLowerLimit[r, t, y] 
3.18. Total Activity Constraints (TAC) 

Guarantees that the total activity of each technology is greater than or less than the 
user-defined parameters for the entire model period, 
TotalTechnologyModelPeriodActivityLowerLimit and 
TotalTechnologyModelPeriodActivityUpper-Limit respectively. This process can be 
accomplished through the use of Sets such as Year (y), Region (r), and Technology (t). 
Additionally through the use of Parameters, which involve Activity constraints which are 

strictly positive like TotalTechnologyModelPeriodActivityUpperLimit[r,t,y] and 

TotalTechnologyModelPeriodActivityLowerLimit[r,t,y]. Ultimately through the use of 
Variables which include positive Activity variables such as  
TotalTechnologyModelPeriodActivity[r,t] and TotalTechnologyAnnualActivity[r,t,y].  

3.18.1. TAC1_TotalModelHorizonTechnologyActivity 

TotalTechnologyModelPeriodActivity [r, t] = ∑ TotalTechnologyAnnualActivity[r, t, y]

y

 

3.18.2. TAC2_TotalModelHorizonTechnologyActivityUpperLimit 

TotalTechnologyModelPeriodActivity[r, t]

≤ TotalTechnologyModelPeriodActivityUpperLimit[r, t]  
3.18.3. TAC3_TotalModelHorizenTechnologyActivityLowerLimit 



The algebraic formulation of the open-source energy modeling system (OSeMOSYS) 

 

18 

 

TotalTechnologyModelPeriodActivity[r, t]  
≥ TotalTechnologyModelPeriodActivityLowerLimit [r, t] 

3.19. Reserve Margin Constraints (RM) 

Guarantees that the user-defined ReserveMargin is maintained by installing 

sufficient reserve capacity of particular technologies (ReserveMarginTagTechnology = 1). 
This process can be successful through the use of Sets like Year (y), Region (r), TimeSlice 
(l) and Fuel (f). As well as the use of Parameters in terms of Performance such as 
CapacityToActivityUnit[r,t] and Reserve Margin in which we use 

ReserveMarginTagTechnology[r,t,y], ReserveMarginTagFuel[r,f,y] and 
ReserveMargin[r,y]. Also through the use of Variables which are positive including Activity 

variables such as RateOfProduction[r,l,f,y], Capacity variables like 
TotalCapacityAnnual[r,t,y], and Reserve Margin Variables such as 
TotalCapacityInReserveMargin[r,y] and DemandNeedingReserveMargin[r,l,y]. 

3.19.1. RM1_ReserveMargin_TechnologiesIncluded_In_Activity_Units 

TotalCapacityInReserveMargin[r, y]

= ∑(TotalCapacityAnnual[r, t, y] × ReserveMarginTagTechnology[r, t, y]

t

×  CapacityToActivityUnit[r, t]) 

3.19.2. RM2_ReserveMargin_FuelsIncluded 

DemandNeedingReserveMargin[r, l, y]

= ∑(RateOfProduction[r, l, f, y] ×  ReserveMarginTagFuel[r, f, y])

f

 

3.19.3. RM3_ReserveMargin_Constraint 

TotalCapacityInReserveMargin[r, y]
≥ DemandNeedingReserveMargin [r, l, y] × ReserveMargin[r, y] 

3.20. RE Production Target (RE) 

Guarantees that production from renewable energy technologies 
(RETagTechnology = 1) meets the user-defined renewable energy (RE) target. This 
procedure can be achieved through the use of  Sets which include Year (y), Region (r), 
TimeSlice (l), Fuel (f) and Technology (t). In addition, through the use Parameters in terms 

of Global parameters like YearSplit[l,y]  and RE Generation target  such as 
RETagTechnology[r,t,y],  RETagFuel[r,f,y] and  REMinProductionTarget[r,y]. Eventually 
through the use of Variables which are positive including Activity variables we have 

ProductionByTechnologyAnnual[r,t,f,y], ProductionByTechnology[r,l,t,f,y], 
RateOfProduction[r,l,f,y], RateOfUseByTechnology[r,l,t,f,y] and 
UseByTechnologyAnnual[r,t,f,y]. Finally we use Reserve Margin variables such as 

TotalREProductionAnnual[r,y] and   RETotalProductionOfTargetFuelAnnual[r,y]. 
3.20.1. RE1_FuelProductionByTechnologyAnnual 

ProductionByTechnologyAnnual [r, t, f, y] = ∑ ProductionByTechnology [r, l, t, f, y]

l

 

3.20.2. RE2_TechIncluded 

TotalREProductionAnnual[r, y]

= ∑ ProductionByTechnologyAnnual[r, t, f, y] × RETagTechnology[r, t, y] 

t,f

 

3.20.3. RE3_FuelIncluded 

RETotalProductionOfTargetFuelAnnual[r, y]

= ∑(RateOfProduction[r, l, f, y] × YearSplit[l, y] × RETagFuel[r, f, y] 

l,f

) 

3.20.4. RE4_EnergyConstraint 
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TotalREProductionAnnual[r, y]
≥ REMinProductionTarget[r, y]
× RETotalProductionOfTargetFuelAnnual[r, y]  

3.20.5. RE5_FuelUseByTechnologyAnnual 

UseByTechnologyAnnual[r, t, f, y] = ∑(RateOfUseByTechnology[r, l, t, f, y] × YearSplit [l, y])

l

 

3.21. Emissions Accounting (E) 

Calculates each technology's annual and model period emissions for each category 
of emission. It also estimates any relevant total emission penalties. Fina lly, it guarantees that 

emissions do not exceed predetermined limitations, which can be set for each year or the 
entire model period. This operation can be accomplished through the use of Sets such as Year 
(y), Region (r), Technology (t), Emission (e) and Mode_Of_Operation (m). As well as 
through using Parameters including Global Parameters which are strictly positive like 

DiscountRate[r] and in Emissions we use EmissionActivityRatio[r,t,e,m,y], 
EmissionsPenalty[r,e,y], ModelPeriodEmissionLimit[r,e], 
ModelPeriodExogenousEmission[r,e], AnnualEmissionLimit[r,e,y] and 
AnnualExogenousEmission[r,e,y]. Ultimately through the use of Variables which are 
positive including Activity variables TotalAnnualTechnologyActivityByMode[r,t,m,y]. 
And Reserve Margin variables such as AnnualTechnologyEmissionByMode[r,t,e,m,y], 

AnnualTechnologyEmission[r,t,e,y], 
AnnualTechnologyEmissionPenaltyByEmission[r,t,e,y], 
AnnualTechnologyEmissionsPenalty[r,t,y], DiscountedTechnologyEmissionsPenalty[r,t,y], 
AnnualEmissions[r,e,y] and ModelPeriodEmissions[r,e].  

3.21.1. E1_AnnualEmissionProductionByMode 

AnnualTechnologyEmissionByMode[r, t, e, m, y]

= EmissionActivityRatio[r, t, e, m, y]
× TotalAnnualTechnologyActivityByMode[r, t, m, y] 

3.21.2. E2_AnnualEmissionProduction 

AnnualTechnologyEmission[r, t, e, y] = ∑ AnnualTechnologyEmissionByMode[r, t, e, m, y]

m

 

3.21.3. E3_EmissionsPenaltyByTechAndEmission 

AnnualTechnologyEmissionPenaltyByEmission[r, t, e, y]

= AnnualTechnologyEmission[r, t, e, y] × EmissionsPenalty[r, e, y]  
3.21.4. E4_EmissionsPenaltyByTechnology 

AnnualTechnologyEmissionsPenalty [r, t, y]

= ∑ AnnualTechnologyEmissionPenaltyByEmission [r, t, e, y]

𝑒

 

3.21.5. E5_DiscountedEmissionsPenaltyByTechnology 

DiscountedTechnologyEmissionsPenalty[r, t, y] =
AnnualTechnologyEmissionsPenalty [r, t, y]

(1 + DiscountRate [r])(y−min(yy)+0.5)  

3.21.6. E6_EmissionsAccounting1{r in REGION, e in EMISSION, y in YEAR}: 

AnnualEmissions[r, e, y] = ∑ AnnualTechnologyEmission [r, t, e, y]

t

 

3.21.7. E7_EmissionsAccounting2{r in REGION, e in EMISSION}: 

∑  AnnualEmissions[r, e, y] =

𝑦

ModelPeriodEmissions[r, e]

− ModelPeriodExogenousEmission[r, e] 
3.21.8. E8_AnnualEmissionsLimit 

AnnualEmissionLimit[r, e, y] ≥ AnnualEmissions [r, e, y] + AnnualExogenousEmission[r, e, y]  
3.21.9. E9_ModelPeriodEmissionsLimit{r in REGION, e in EMISSION}: 
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𝑀𝑜𝑑𝑒𝑙𝑃𝑒𝑟𝑖𝑜𝑑𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠[𝑟, 𝑒]  <=  𝑀𝑜𝑑𝑒𝑙𝑃𝑒𝑟𝑖𝑜𝑑𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡[𝑟, 𝑒] 

4- CONCLUSION:  

This paper summarized the mathematical algebraic formulation, with a plain description 

of sets parameters and variables used in each block of OSeMOSYS. What makes the use of 

OSeMOSYS interesting is its open accessible nature, clear levels of abstraction and the 

potential for its use and development of an online community, where new development ideas 

can be proposed, showcased, and executed. This is aimed at promoting meaningful model 

development through academic projects in particular (including, for example, postgraduate 

student input in the form of thesis work). Open workshops (such as those hosted by KTH 

(Royal Swedish Institute of Technology)). 
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