
Revue d’Economie et de Statistique Appliquée
Volume 19 number 2, July 2022
ISSN: 1112-234X EISSN: 2600-6642

Pages:6-20

THE ALGEBRAIC FORMULATION OF THE OPEN-SOURCE ENERGY

MODELING SYSTEM (OSeMOSYS)

Souhila BENBRAHIM

Ecole Nationale Supérieure de Statistique et d’Economie Appliquée ENSSEA

benbrahim.souhila@enssea.net

Saloua CHAOUCHE-QOUIDRAT

Ecole Nationale Supérieure de Statistique et d’Economie Appliquée ENSSEA

chaouche.saloua@hotmail.com

Rachid TOUMACHE

Ecole Nationale Supérieure de Statistique et d’Economie Appliquée ENSSEA Email :

rtoumache@gmail.com

Reçu le: 2021/10/22 Accepté le : 2022/03/12 Publication en ligne le: 2022/06/15

ABSTRACT: This paper discusses the mathematical analogy of the Open-Source Energy Modeling

System (OSeMOSYS). It describes the algebraic formulation of the model by providing a plain

description of sets, parameters and variables used in each block. As statisticians and economists, we

are interested in mathematical development more than code implementation, so the added value of this
paper is that it treats the detailed algebraic formulation which is developed from its latest full source
code., we provide each block with a plain description of sets, parameters and variables used in each
block of the OSeMOSYS with the detailed equations by making the passage from conditions used in

the source code to simple solutions in order to have simple equations.
Keywords : OSeMOSYS; Energy modeling system; Bottom-up; Algebraic formulation; Open source

JEL Classification: C020; C610; Q40

1. INTRODUCTION:

OSeMOSYS (open-source modelling system) is a long-run integrated assessment and

energy planning. It has been used to create models of energy systems. It can focus on detailed

power representations, or multi-resource (material, financial, all energy) systems.

“OSeMOSYS is designed to be easily updated and modified to suit the needs of a particular

analysis. To provide this capability, the model is being developed in a series of component

‘blocks’ of functionality”(Howells et al., 2011). It is a bottom-up model based on a linear

programming with an objective function (block1) at the contrary to the rest of blocks: Costs,

Storage, Capacity adequacy, Energy balance, Constraints and Emissions. Each block is also

subdivided into several degrees of abstraction, as follows:

 Corresponding Author

mailto:benbrahim.souhila@enssea.net
mailto:chaouche.saloua@hotmail.com
mailto:rtoumache@gmail.com

Souhila BENBRAHIM & Saloua CHAOUCHE QOUIDRAT & Rachid TOUMACHE

7

- Plain English description

- Mathematical Analogy

- Micro Implementation

Figure N°1: Current OSeMOSYS ‘blocks’ and levels of abstraction.

Source : (Howells et al., 2011)

In our paper we will treat the detailed algebraic formulation which is developed from
its latest full source code. The paper begins with an introduction and a literature review of

modeling energy systems and presenting the OSeMOSYS as a bottom-up modeling energy
system. Also, we provide each block with a plain description of sets, parameters and variables
used in each block of the OSeMOSYS with the detailed equations by making the passage
from conditions used in the source code to simple solutions in order to have simple equations
for each block. Using the latest documentation of OSeMOSYS (OSeMOSYS Documentation
Release 0.0.1 KTH-DESA, 2021) and from the code source published inside we have

developed the algebraic formulation of the equations of each block to help statisticians and
economists to get a better comprehension of the OSeMOSYS model.

2. LITERATURE REVIEW:

Energy system models can be considered as a subcategory of partial equilibrium models
used to assess costs of reducing emissions; no need to represent impact by focusing on
emissions rather than climate change (Doukas et al., 2019). OSeMOSYS as one of Energy

system models based on the linear programming to minimize the total discounted cost was
developed for the first time by Howells in its reference article (Howells et al., 2011)
discussing its ethos, structure and development. OSeMOSYS expands in the second paper of
Howells with Welsch by describing how ‘blocks of functionality’ may be added to represent
variability in electricity generation, a prioritisation of demand types, shifting demand, and
storage options. The paper demonstrates the flexibility and ease-of-use of OSeMOSYS with

regard to modifications of its code (Welsch et al., 2012).

The algebraic formulation of the open-source energy modeling system (OSeMOSYS)

8

Many of studies are done using OSeMOSYS which are published in its official website
containing also the data used in each case. We also have the github of the OSeMOSYS. In
the appendix of (Howells et al., 2011) we have the first algebraic formulation but it is not

refreshed so in this paper we will do a reverse method to obtain the latest algebraic
reformulation from equations of the code source published in the github and in (OSeMOSYS
Documentation Release 0.0.1 KTH-DESA, 2021).

3. Mathematical analogy of OSeMOSYS :

3.1. Objectif function

This particular equation represents the global objective of the model. The main objective
of OSeMOSYS is to minimize the total system cost over the entire model period. This can

be achieved through using Sets and Variables, for instance, in Sets we have Year (y) and
Region (r). And in Variables we have positive costing variables which is represented in
TotalDiscountedCost[r,y].

3.1.1. 𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞𝐂𝐨𝐬𝐭 = ∑ TotalDiscountedCost[r, y]r,y

3.2. Rate of demand

The equation provided below is utilized to derive the term RateOfDemand. From the
user-provided data for SpecifiedAnnualDemand and SpecifiedDemandProfile. For each
combination of commodity, TimeSlice and Year, the RateOfDemand is defined. Through the
use of Sets, Parameters and Variables. In Sets we have Year (y), Region (r), TimeSlice (I)

and Fuel (f). Moreover, in Parameters we have Global parameters in which YearSplit[l,y]
must be strictly positive, and within parameters we have Demands as well as
SpecifiedAnnualDemand[r,f,y] and SpecifiedDemandProfile[r,f,l,y].

3.2.1. 𝐑𝐚𝐭𝐞𝐨𝐟𝐃𝐞𝐦𝐚𝐧𝐝[𝐫, 𝐥, 𝐟, 𝐲] = SpecifiedAnnuualDemand[r, f, y] ×
 SpecifedDemandProfil[r, f, l, y] / YearSplit[l, y]

3.3. Capacity Adequacy A (CAa)

Used to compute total capacity of each technology for each year based on residual

capacity from before the model period (ResidualCapacity), AccumulatedNewCapacity
during the modelling period, and NewCapacity built in each year. The Capacity is next
checked to see if it meets the RateOfTotalActivity in each TimeSlice and Year. There is also
a constraint dependent on the size, or capacity, of each Technology unit
(CapacityOfOneTechnologyUnit).
This sets down that the capacity of a particular Technology can only be a multiple of the user-

defined CapacityOfOneTechnologyUnit. It is only provided through using Sets such as Year
(y), Region (r), TimeSlice (I), Technology (t) and Mode_Of_Operation (m). Also through
using Parameters, which include Performance and Capacity constraints, first, we have
Performance such as OperationalLife[r,t] ResidualCapacity[r,t,y],
CapacityToActivityUnit[r,t] and CapacityFactor[r,t,l,y], second, in Capacity contsraints

we use CapacityOfOneTechnologyUnit[r,t,y] which must not be equal to zero. Furthermore,

in Variables we have Acitivity variables and Capacity variables which are positive.
Activity variables which include RateOfActivity[r,l,t,m,y] and RateOfTotalActivity[r,t,l,y].
And in Capacity variables we have NewCapacity[r,t,y],TotalCapacityAnnual[r,t,y],and
NumberOfNewTechnologyUnits[r,t,y].

3.3.1. CAa1_Total NewCapacity

AccumulatedNewCapacity [r, t, y] = ∑ 𝑁𝑒𝑤 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦[𝑟, 𝑡, 𝑦𝑦]

𝑦

𝑦𝑦>𝑦−OperationalLifeStorage[r,s]

3.3.2. CAa2_Total AnnualCapacity

TotalCapacityAnnual [r, t, y] = AccumulatedNewCapacity [r, t, y] + ResidualCapacity [r, t, y]
3.3.3. CAa3_Total ActivityofEachTechnology

Souhila BENBRAHIM & Saloua CHAOUCHE QOUIDRAT & Rachid TOUMACHE

9

RateOfTotalActivity [r, t, l, y] = ∑ 𝑅𝑎𝑡𝑒𝑂𝑓𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑚

[r, l, t, m, y]

3.3.4. CAa4_Constraint-Capacity

RateOfTotalActivity [r, t, l, y]
≤ 𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐴𝑛𝑛𝑢𝑎𝑙[r, t, y] × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 [r, t, l, y]
× 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑜𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑈𝑛𝑖𝑡[r, t]

3.3.5. CAa5_TotalNewCapacity

NewCapacity[r, t, y] = CapacityOfOneTechnologyUnit[r, t, y] × NumberOfNewTechnology[r, t, y]

3.4. Capacity Adequacy B (CAb)

Guarantees that appropriate capacity of technologies exist to meet at least the average
yearly demand. Through using Sets as well as Parameters. In Sets we use Year (y), Region

(r), TimeSlice (I) and Technology (t). In Parameters such as Global parameters which
include YearSplit[l,y]. And in Performance we use CapacityToActivityUnit[r,t],
CapacityFactor[r,t,l,y] and AvailabilityFactor[r,t,y]. In Variables we have Activity

variables and Capacity variables which are positive. Activity variables such as

RateOfTotalActivity[r,t,l,y], and Capacity variables like TotalCapacityAnnual[r,t,y].
3.4.1. Cab1_PlannedMaintenance

∑(𝑅𝑎𝑡𝑒𝑂𝑓𝑇𝑜𝑡𝑎𝑙𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦[r, t, l, y] × 𝑌𝑒𝑎𝑟𝑆𝑝𝑙𝑖𝑡[𝑙 , 𝑦])

𝑙

≤ ∑(𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐴𝑛𝑛𝑢𝑎𝑙[r, t, y] × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 [r, t, l, y]

𝑙

× 𝑌𝑒𝑎𝑟𝑆𝑝𝑙𝑖𝑡[𝑙 , 𝑦]) × 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟[r, t, y]
× 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑜𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑈𝑛𝑖𝑡 [r, t]

3.5. Energy Balance A (EBa)

Guarantees that each commodity's demand is met in each TimeSlice. This can be
achieved by using Sets such as Year (y), Region (r), TimeSlice (l), Fuel (f), Technology (t)
and Mode_Of_Operation (m). Also by the use of Parameters which include Global

Parameters and Performance. In Global Parameters we use YearSplit[l,y] ,
TradeRoute[r,rr,f,y] And in Performance in which must not be equal to a zero, we have
OutputActivityRatio[r,t,f,m,y] and InputActivityRatio[r,t,f,m,y]. Moreover, we use
Variables which are positive including Activity Variables like
RateOfProductionByTechnologyByMode[r,l,t,m,f,y], RateOfActivity[r,l,t,m,y],
RateOfProductionByTechnology[r,l,t,f,y], RateOfProduction[r,l,f,y],

RateOfUseByTechnologyByMode[r,l,t,m,f,y], RateOfUseByTechnology[r,l,t,f,y],
RateOfUse[r,l,f,y], Use[r,l,f,y], Trade[r,rr,l,f,y] and Production[r,l,f,y]. Also, we have
Demands like RateOfDemand[r,l,f,y] and Demand[r,l,f,y].

3.5.1. EBa1_RateOfFuelProduction1

RateOfProductionByTechnologyByMode[r, l, t, m, f, y]

= RateOfActivity[r, l, t, m, f, y] × OutputActivityRatio[r, l, t, m, f, y]
3.5.2. EBa2_RateOfFuelProduction2

RateOfProductionByTechnology[r, l, t, f, y]

= ∑ RateOfProductionByTechnologyByMode[r, l, t, m, f, y]

m

3.5.3. EBa3_RateOfFuelProduction3

RateOfProduction[r, f, l, y] = ∑ RateOfProductionByTechnology[r, l, t, f, y]

t

3.5.4. EBa4_RateOfFuelUse1

The algebraic formulation of the open-source energy modeling system (OSeMOSYS)

10

RateOfUseByTechnologyByMode[r, l, t, m, f, y]
= RateOfActivity[r, l, t, m, y] × InputActivityRatio[r, t, m, f, y]

3.5.5. EBa5_RateOfFuelUse2

RateOfUseByTechnology [r, l, t, f, y] = ∑ RateOfUseByTechnologyByMode[r, l, t, m, f, y]

m

3.5.6. EBa6_RateOfFuelUse3

RateOfUse[r, l, f, y] = ∑ RateOfUseByTechnology[r, l, t, f, y]

t

3.5.7. EBa7_EnergyBalanceEachTS1

Production[r, l, f, y] = RateOfProduction[r, l, f, y] × YearSplit[l, y]
3.5.8. EBa8_EnergyBalanceEachTS2

Use[r, l, f, y] = RateOfUse[r, l, f, y] × YearSplit[l, y]
3.5.9. EBa9_EnergyBalanceEachTS3

Demand[r, l, f, y] = RateOfDemand[r, l, f, y] × YearSplit[l, y]
3.5.10. EBa10_EnergyBalanceEachTS4

Trade[r, rr, l, f, y] = − Trade[rr, r, l, f, y]
3.5.11. EBa11_EnergyBalanceEachTS5

Production[r, l, f, y]
≥ Demand[r, l, f, y] + Use[r, l, f, y]

+ ∑ Trade[r, rr, l, f, y] × TradeRate [r, rr, l, f, y]

rr

3.6. Energy Balance B (EBb)

Guarantees that each commodity's demand is met each year. This can be achieved
through using Sets, Parameters and Variables. In Sets we have Year (y), Region (r),
TimeSlice (I) and Fuel (f). Moving on, in Parameters we have Global Parameters such as
TradeRoute[r,rr,f,y] and in Demands we use AccumulatedAnnualDemand[r,f,y]. Finally in
Variables we have Activity variables which are positive, such as, Use[r,l,f,y],
Trade[r,rr,l,f,y], Production[r,l,f,y], TradeAnnual[r,rrf,y], ProductionAnnual[r,f,y] and

UseAnnual[r,f,y].
3.6.1. EBb1_EnergyBalanceEachYear1

ProductionAnnual[r, f, y] = ∑ Production[r, l, f, y]

l

3.6.2. EBb2_EnergyBalanceEachYear2

UseAnnual[r, f, y] = ∑ Use[r, l, f, y]

l

3.6.3. EBb3_EnergyBalanceEachYear3

TradeAnnual[r, rr, f, y] = ∑ Trade[r, rr, l, f, y]

l

3.6.4. EBb4_EnergyBalanceEachYear4

 ProductionAnnual[r, f, y]

≥ UseAnnual[r, f, y] + ∑(TradeAnnual [r, l, f, y] × TradeRoute [r, rr, l, f, y]

rr

)

+ AccumulatedAnnualDemand [r, f, y]
3.7. Accounting Technology Production Use (Acc)

ProductionByTechnology, UseBytechnology,
TotalAnnualTechnologyActivityByMode, and ModelPeriodCostByRegion are accounting
equations used to generate specific intermediate variables. This can only be achieved through
using Sets such as YEAR (y), REGION (r), TIMESLICE (I), FUEL(f), TECHNOLOGY (t)
and MODE_OF_OPERATION (m). Also through the use of Parameters we have Global

Souhila BENBRAHIM & Saloua CHAOUCHE QOUIDRAT & Rachid TOUMACHE

11

parameters such as YearSplit[l,y]. Finally Through the use of Variables in which we have

Activity variables that are positive including RateOfActivity[r,l,t,m,y],
RateOfProductionByTechnology[r,l,t,f,y], RateOfUseByTechnology[r,l,t,f,y],

ProductionByTechnology[r,l,t,f,y], UseByTechnology[r,l,t,f,y] and
TotalAnnualTechnologyActivityByMode[r,t,m,y]. As well as using Costing variables such
as ModelPeriodCostByRegion[r] and TotalDiscountCosts[r,y].

3.7.1. Acc1_FuelProductionByTechnology

ProductionByTechnology [r, l, t, f, y] = RateOfProductionByTechnology[r, l, t, f, y] × YearSplit [l, y]
3.7.2. Acc2_FuelUseByTechnology

UseByTechnology [r, l, t, f, y] = RateOfUseByTechnology[r, l, t, f, y] × YearSplit [l, y]
3.7.3. Acc3_AverageAnnualRateOfActivity

TotalAnnualTechnologyActivityByMode[r, t, m, y]

= ∑(RateOfActivity[r, l, t, m, y] × YearSplit[l, y])

l

3.7.4. Acc4_ModelPeriodCostByRegion

ModelPeriodCostByRegion[r] = ∑ TotalDiscountCosts [r, y]

y

3.8. Storage Equations (S)

This can only be achieved through using Sets Year (y), Region (r), TimeSlice (I),
Mode_Of_Operation (m), Season (ls), DayType (ld), DailyTimeBracket (lh) and Storage (s).
Morevover, we use Parameters, first we have Global parameters which includes

YearSplit[l,y], DaySplit[lh,y], Conversionls[l,ls], Conversionld[ld,l], Conversionlh[lh,l] and
DaysInDayType[ls,ld,y]. Second, we have Storage in which they are strictly positive, we
use TechnologyToStorage[r,t,s,m], TechnologyFromStorage[r,t,s,m], and
StorageLevelStart[r,s]. Finally in Variables we use Activity variables which are positive
like RateOfActivity[r,l,t,m,y] and in Storage Variables we have
RateOfStorageCharge[r,s,ls,ld,lh,y], RateOfStorageDischarge[r,s,ls,ld,lh,y],

NetChargeWithinYear[r,s,ls,ld,lh,y] and NetChargeWithinDay[r,s,ls,ld,lh,y]. And other
storage variables which are positive like StorageLevelYearStart[r,s,y],
StorageLevelSeasonStart[r,s,ls,y], StorageLevelDayTypeStart[r,s,ls,ld,y],
StorageLevelYearFinish[r,s,y] and StorageLevelDayTypeFinish[r,s,ls,ld,y].

3.8.1. S1_RateOfStorageCharge

RateOfStorageCharge[r, s, ls, ld, lh, y]

= ∑ RateOfActivity[r, l, t, m, y] × TechnologyToStorage [r, t, s, m]

t,m,l

× Conversionls[l, ls] × Conversionld [l, ld] × Conversionlh [l, lh]
3.8.2. S2_RateOfStorageDischarge

RateOfStorageDischarge[r, s, ls, ld, lh, y]

= ∑(RateOfActivity[r, l, t, m, y] × TechnologyFromStorage[r, t, s, m]

t,m,l

× Conversionls[l, ls] × Conversionld[l, ld] × Conversionlh[l, lh])
3.8.3. S3_NetChargeWithinYear

𝑁𝑒𝑡𝐶ℎ𝑎𝑟𝑔𝑒𝑊𝑖𝑡ℎ𝑖𝑛𝑌𝑒𝑎𝑟[𝑟, 𝑠, 𝑙𝑠, 𝑙𝑑, 𝑙ℎ, 𝑦]

= ∑(𝑅𝑎𝑡𝑒𝑂𝑓𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶ℎ𝑎𝑟𝑔𝑒[r, s, ls, ld, lh, y]

𝑙

− 𝑅𝑎𝑡𝑒𝑂𝑓𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 [r, s, ls, ld, lh, y]) × 𝑌𝑒𝑎𝑟𝑆𝑝𝑙𝑖𝑡[𝑙, 𝑦]

× 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑙𝑠[𝑙, 𝑙𝑠] × 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑙𝑑[𝑙, 𝑙𝑑] × 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑙ℎ[𝑙, 𝑙ℎ]
3.8.4. S4_NetChargeWithinDay

The algebraic formulation of the open-source energy modeling system (OSeMOSYS)

12

𝑁𝑒𝑡𝐶ℎ𝑎𝑟𝑔𝑒𝑊𝑖𝑡ℎ𝑖𝑛𝐷𝑎𝑦 [𝑟, 𝑠, 𝑙𝑠, 𝑙𝑑, 𝑙ℎ, 𝑦]
= (𝑅𝑎𝑡𝑒𝑂𝑓𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶ℎ𝑎𝑟𝑔𝑒[r, s, ls, ld, lh, y]
− 𝑅𝑎𝑡𝑒𝑂𝑓𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒[r, s, ls, ld, lh, y]) × 𝐷𝑎𝑦𝑆𝑝𝑙𝑖𝑡[lh, y]

3.8.5. S5_and_S6_StorageLevelYearStart

If y = min (yy) ∶ StorageLevelStart[r, s]

else ∶ StorageLevelYearStart[r, s, y − 1] + ∑ NetChargeWithinYear[r, s, ls, ld, lh, y − 1]

3.8.6. S7_and_S8_StorageLevelYearFinish

If y < max(yy) StorageLevelYearStart[r, s, y + 1]

else ∶ StorageLevelYearStart[r, s, y] + ∑ NetChargeWithinyear [r, s, ls, ld, lh, y]

3.8.7. S9_and_S10_StorageLevelSeasonStart

If Ls = min(LsLs) ∶ StorageLevelYearStart[r, s, y]

else ∶ StorageLevelSeasonStart[r, s, ls − 1, y] + ∑ NetChargeWithinYear[r, s, ls − 1, ld, lh, y]

3.8.8. S11_and_S12_StorageLevelDayTypeStart

If Ld = min(LdLd) ∶ StorageLevelSeasonStart[r, s, ls, y]
else ∶ StorageLevelDayTypeStart[r, s, ls, ld − 1, y]

+ ∑ NetChargeWithinDay[r, s, ls, ld − 1, lh, y] × DaysInDayType[ls, ld − 1, y]

3.8.9. S13_and_S14_ and_S15_StorageLevelDayTypeFinish

If Ls = max(LsLs) && Ld = max(LdLd): StorageLevelYearFinish[r, s, y]
else If Ld = max(LdLd): StorageLevelSeasonStart [r, s, ls + 1, y]

else: StorageLevelDayTypeFinish[r, s, ls, ld + 1, y]

− ∑ NetChargeWithinDay[r, s, ls, ld + 1, lh, y] × DaysInDayType[ls, ld

+ 1, y]
3.9. Storage Constraints (SC)

This can only be achieved through using Sets such as Year (y), Region (r),
TimeSlice (I), Season (ls), DayType (ld), DailyTimeBracket (lh) and Storage (s). As well as
using Parameters which include Storage such as StorageMaxChargeRate[r,s] and
StorageMaxDischargeRate[r,s]. Finally by the use of Variables which are positive including
Storage variables like NetChargeWithinDay[r,s,ls,ld,lh,y],

RateOfStorageCharge[r,s,ls,ld,lh,y], RateOfStorageDischarge[r,s,ls,ld,lh,y],
StorageLevelDayTypeStart[r,s,ls,ld,y], StorageLevelDayTypeFinish[r,s,ls,ld,y],
StorageLowerLimit[r,s,y] and StorageUpperLimit[r,s,y].

3.9.1. SC1_LowerLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInFi

rstWeekConstraint

StorageLevelDayTypeStart[r, s, ls, ld, y])

+ ∑ (NetChargeWithinDay [r, s, ls, ld, lhlh, y]) − StorageLowerLimit[r, s, y]

Lh

LhLh

≥ 0
3.9.2. SC1_UpperLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInFi

rstWeekConstraint

StorageLevelDayTypeStart[r, s, ls, ld, y])

+ ∑ (NetChargeWithinDay [r, s, ls, ld, lhlh, y]) − StorageUpperLimit[r, s, y]

Lh

LhLh

≤ 0
3.9.3. SC2_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInFirstWe

ekConstraint

Souhila BENBRAHIM & Saloua CHAOUCHE QOUIDRAT & Rachid TOUMACHE

13

If Ld > min(LdLd) ∶ StorageLevelDayTypeStart[r, s, ls, ld, y]

− ∑ (NetChargeWithinDay[r, s, ls, ld − 1, lhlh, y])

Lh

LhLh

− StorageLowerLimit[r, s, y] ≥ 0
3.9.4. SC2_UpperLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInFirstWe

ekConstraint

If Ld > min(LdLd) ∶ StorageLevelDayTypeStart[r, s, ls, ld, y]

− ∑ (NetChargeWithinDay[r, s, ls, ld − 1, lhlh, y])

Lh

LhLh

− StorageUpperLimit[r, s, y] ≤ 0
3.9.5. SC3_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInLastWe

ekConstraint

StorageLevelDayTypeFinish[r, s, ls, ld, y])

− ∑ (NetChargeWithinDay[r, s, ls, ld, lhlh, y]) − StorageLowerLimit[r, s, y]

Lh

LhLh

≥ 0
3.9.6. SC3_UpperLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInLastWe

ekConstraint

StorageLevelDayTypeFinish [r, s, ls, ld, y])

− ∑ (NetChargeWithinDay [r, s, ls, ld, lhlh, y]) − StorageUpperLimit[r, s, y]

Lh

LhLh

≤ 0
3.9.7. SC4_LowerLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInL

astWeekConstraint

If Ld > min(LdLd) ∶ StorageLevelDayTypeFinish[r, s, ls, ld − 1, y]

− ∑ (NetChargeWithinDay[r, s, ls, ld, lhlh, y]) − StorageLowerLimit[r, s, y]

Lh

LhLh

≥ 0
3.9.8. SC4_UpperLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInL

astWeekConstraint

If Ld > min(LdLd) ∶ StorageLevelDayTypeFinish [r, s, ls, ld − 1, y]

− ∑ (NetChargeWithinDay [r, s, ls, ld, lhlh, y]) − StorageUpperLimit[r, s, y]

Lh

LhLh

≤ 0
3.9.9. SC5_MaxChargeConstraint

RateOfStorageCharge [r, s, ls, ld, lh, y] ≤ StorageMaxChargeRate [r, s]
3.9.10. SC6_MaxDischargeConstraint

RateOfStorageDischarge[r, s, ls, ld, lh, y] ≤ StorageMaxDichargeRate[r, s]

3.10. Storage Investments (SI)

Calculating the total discounted capital costs spent in each year for each storage

technology. This can only be achieved through the use of Sets Year (y), Region (r) and
Storage (s). As well as using Parameters which include Global parameters such as

DiscountRate[r], DepreciationMethod[r] And in Storage we have
OperationalLifeStorage[r,s], ResidualStorageCapacity[r,s,y], MinStorageCharge[r,s,y] and
CapitalCostStorage[r,s,y]. Finally by the use of Variables which are positive including
Storage variables such as StorageLowerLimit[r,s,y], StorageUpperLimit[r,s,y],

The algebraic formulation of the open-source energy modeling system (OSeMOSYS)

14

AccumulatedNewStorageCapacity[r,s,y], NewStorageCapacity[r,s,y],
CapitalInvestmentStorage[r,s,y], DiscountedCapitalInvestmentStorage[r,s,y],
SalvageValueStorage[r,s,y], DiscountedSalvageValueStorage[r,s,y], and

TotalDiscountedStorageCost[r,s,y].
3.10.1. SI1_StorageUpperLimit

StorageUpperLimit[r, s, y]
= AccumulatedNewStorageCapacity[r, s, y]
+ ResidualStorageCapacity [r, s, y]

3.10.2. SI2_StorageLowerLimit

𝑆𝑡𝑜𝑟𝑎𝑔𝑒Lower𝐿𝑖𝑚𝑖𝑡[𝑟, 𝑠, 𝑦] = MinStorageCharge[r, s, y] × StorageUpperLimit[r, s, y]
3.10.3. SI3_TotalNewStorage

AccumulatedNewStorageCapacity[r, s, y]

= ∑ NewStorageCapacity[r, s, yy]

y

yy>y−OperationalLifeStorage[r,s]

3.10.4. SI4_UndiscountedCapitalInvestmentStorage

CapitalInvestmentStorage[r, s, y] = CapitalCostStorage [r, s, y] × NewStorageCapacity[r, s, y]
3.10.5. SI5_DiscountingCapitalInvestmentStorage

DiscountedCapitalInvestmentStorage [r, s, y] =
CapitalInvestmentStorage[r, s, y]

(1 + DiscountRate [r]) y−min(yy)

3.10.6. SI6_SalvageValueStorageAtEndOfPeriod1

When y + OperationalLifeStorage[r, s] − 1 ≤ max(yy): SalvageValueStorage [r, s, y] = 0
3.10.7. SI7_SalvageValueStorageAtEndOfPeriod2

If
DepreciationMethod[r] = 1

 && (y + OperationalLifeStorage[r, s] − 1) > max (yy)
&& DiscountRate [r] = 0

DepreciationMethod[r] = 2
&& (y + OperationalLifeStorage[r, s] − 1) > max(yy)

: SalvageValueStorage [r, s, y] = CapitalInvestmentStorage[r, s, y] × (
1−(max(yy)– y+1)

OperationalLifeStorage[r,s]
)

3.10.8. SI8_SalvageValueStorageAtEndOfPeriod3

If
DepreciationMethod[r] = 1

&& (y + OperationalLifeStorage [r, s] − 1) > max (yy)
&& DiscountRate [r] > 0

: SalvageValueStorage[r, s, y] =
CapitalInvestmentStorage[r, s, y] ×

(1 − (
(1 + DiscountRate[r])max(yy)–y+1 − 1

(1 + DiscountRate[r])OperationalLifeStorage[r,s] − 1
))

3.10.9. SI9_SalvageValueStorageDiscountedToStartYear

DiscountedSalvageValueStorage [r, s, y] =
SalvageValueStorage[r, s, y]

(1 + DiscountRate [r])(max(yy)−min(yy)+1)

3.10.10. SI10_TotalDiscountedCostByStorage

TotalDiscountedStorageCost [r, s, y]
= DiscountedCapitalInvestmentStorage[r, s, y]
− DiscountedSalvageValueStorage[r, s, y]

3.11. Capital Costs (CC)

Calculating the total discounted capital cost spent in each technology for each year.
This can be only achieved through the use of Sets, Parameters and Variables. In Sets we
have Year (y), Region (r) and Technology (t). In addition to using Parameters we have

Souhila BENBRAHIM & Saloua CHAOUCHE QOUIDRAT & Rachid TOUMACHE

15

Global parameters like DiscountRate[r] and Technology costs such as CapitalCost[r,t,y].
Finally we use Variables which are positive including Capacity variables like
NewCapacity[r,t,y] and Costing variables such as CapitalInvestment[r,t,y] and

DiscountedCapitalInvestment[r,t,y]
3.11.1. CC1_UndiscountedCapitalInvestment

CapitalInvestment[r, t, y] = CapitalCost[r, t, y] × NewCapacity[r, t, y]
3.11.2. CC2_DiscountingCapitalInvestment

DiscountedCapitalInvestment [r, t, y] =
CapitalInvestment[r, t, y]

(1 + DiscountRate[r])(y− min(yy))

3.12. Salvage Value (SV)

Calculates the portion of the initial capital cost that can be retrieved at the end of a
technologies operational life. One of two depreciation methodologies, straight line or sinking
fund, can be used to compute the salvage value. This operation can be accomplished through
the use of Sets in which we have Year (y), Region (r) and Technology (t), and Storage (s).
Additionally through the use of Parameters which involve Global parameters such as

DiscountRate[r] which is strictly positive and DepreciationMethod[r], Techonoly costs like
CapitalCost[r,t,y] and in Performance we have OperationalLifeStorage[r,s]. By ultimately
using Variables which are positive we have Capacity variables like NewCapacity[r,t,y] and
Costing variables such as SalvageValue[r,t,y] and DiscountedSalvageValue[r,t,y].

3.12.1. SV1_SalvageValueAtEndOfPeriod1

If
DepreciationMethod[r] = 1

&& (y + OperationalLifeStorage [r, s] − 1) > max (yy)
&& DiscountRate [r] > 0

 SalvageValue[r, t, y] = CapitalCost[r, t, y] × NewCapacity[r, t, y] ×

(1 − (
((1 + DiscountRate[r])max(yy) − y+1) − 1)

((1 + DiscountRate[r])OperationalLife[r,t] − 1)

3.12.2. SV2_SalvageValueAtEndOfPeriod2

If
DepreciationMethod[r] = 1

&& (y + OperationalLifeStorage [r, s] − 1) > max (yy)
&& DiscountRate [r] = 0

DepreciationMethod[r] = 2
&& (y + OperationalLifeStorage[r, s] − 1) > max(yy)

SalvageValue[r, t, y] = CapitalCost[r, t, y] × NewCapacity[r, t, y] × (
(max(yy)– y + 1)

OperationalLife[r, t]
)

3.12.3. SV3_SalvageValueAtEndOfPeriod3

If
(y + OperationalLifeStorage [r, s] − 1) ≤ max(yy)

SalvageValue[r, t, y] = 0
3.12.4. SV4_SalvageValueDiscountedToStartYear

DiscountedSalvageValue[r, t, y] =
SalvageValue [r, t, y]

(1 + DiscountRate[r])(1+ max(yy)− min(yy))

3.13. Operating Costs (OC)

Calculates each technology's total variable and fixed operational expenses for each
year. This operation can only be accomplished through the use of Sets which include Year
(y), Region (r), Technology (t) and Mode_Of_Operation (m). Moreover we use Parameters
in which we have Global parameters such as DiscountRate[r] which is strictly positive,

and in Technology costs we have VariableCost[r,t,m,y] and FixedCost[r,t,y]. Eventually
we use Variables which are positive including Activity variables such as

The algebraic formulation of the open-source energy modeling system (OSeMOSYS)

16

TotalAnnualTechnologyActivityByMode[r,t,m,y], Capacity variables we have
TotalCapacityAnnual[r,t,y] and Costing variables we use
AnnualVariableOperatingCost[r,t,y], AnnualFixedOperatingCost[r,t,y], OperatingCost[r,t,y]

and DiscountedOperatingCost[r,t,y].
3.13.1. OC1_OperatingCostsVariable

AnnualVariableOperatingCost[r, t, y]

= ∑(TotalAnnualTechnologyActivityByMode[r, t, m, y]

m

× VariableCost[r, t, m, y])
3.13.2. OC2_OperatingCostsFixedAnnual

AnnualFixedOperatingCost[r, t, y] = TotalCapacityAnnual[r, t, y] × FixedCost[r, t, y]
3.13.3. OC3_OperatingCostsTotalAnnual

OperatingCost[r, t, y]
= AnnualFixedOperatingCost[r, t, y] + AnnualVariableOperatingCost[r, t, y]

3.13.4. OC4_DiscountedOperatingCostsTotalAnnual

DiscountedOperatingCost [r, t, y] =
OperatingCost[r, t, y]

(1 + DiscountRate[r])(y−min(yy)+0.5)

3.14. Total Discounted Costs (TDC)

Calculating the total discounted system cost throughout the entire model period to
give the TotalDiscountedCost. In the objective function of the model, this is the variable that
is minimised. This operation is attained by using Sets such as Year (y), Region (r),
Technology (t) and Storage (s). In this same operation we use Variables which are positive
including Storage variables like TotalDiscountedStorageCost[r,s,y] and Costing including
variablesDiscountedOperatingCost[r,t,y], DiscountedCapitalInvestment[r,t,y],

TotalDiscountedCostByTechnology[r,t,y], DiscountedSalvageValue[r,t,y],
TotalDiscountedCost[r,y] and in Reserve Margin variables we use
DiscountedTechnologyEmissionsPenalty[r,t,y].

3.14.1. TDC1_TotalDiscountedCostByTechnology

TotalDiscountedCostByTechnology [r, t, y]
= DiscountedOperatingCost[r, t, y] + DiscountedCapitalInvestment[r, t, y]
+ DiscountedTechnologyEmissionsPenalty [r, t, y]
− DiscountedSalvageValue[r, t, y]

3.14.2. TDC2_TotalDiscountedCost

TotalDiscountedCost[r, y]

= ∑ TotalDiscountedCostByTechnology[r, t, y]

t

+ ∑ TotalDiscountedStorageCost[r, s, y]

s

3.15. Total Capacity Constraints (TCC)

Guarantees that each technology's total capacity is greater than or less than the user-
defined parameters TotalAnnualMinCapacityInvestment and
TotalAnnualMaxCapacityInvestment in each year. This operation can be accomplished
through the use of Sets like Year (y) Region (r), and Technology (t). Also through the use of
Parameters which are strictly positive including Capacity constraints such as

TotalAnnualMaxCapacity[r,t,y] and TotalAnnualMinCapacity[r,t,y]. Lastly by the use of
Variables which are positive such as Capacity variables like TotalCapacityAnnual[r,t,y].

3.15.1. TCC1_TotalAnnualMaxCapacityConstraint

TotalCapacityAnnual[r, t, y] ≤ TotalAnnualMaxCapacity [r, t, y]
3.15.2. TCC2_TotalAnnualMinCapacityConstraint

TotalCapacityAnnual[r, t, y] ≥ TotalAnnualMinCapacity [r, t, y]

Souhila BENBRAHIM & Saloua CHAOUCHE QOUIDRAT & Rachid TOUMACHE

17

3.16. New Capacity Constraints (NCC)

Guarantees that each year's new capacity for each technology deployed is larger than
or less than the user-defined parameters TotalAnnualMinCapacityInvestment and

TotalAnnualMaxCapacityInvestment, accordingly. This process can be only accomplished
through the use of Sets such as Year (y), Region (r) , and Technology (t). In addition to the
use of Parameters which are strictly positive including Investment constraints
TotalAnnualMaxCapacityInvestment[r,t,y] and TotalAnnualMinCapacityInvestment[r,t,y].
Ulimately through the use of Variables which are positive including Capacity variables
NewCapacity[r,t,y].

3.16.1. NCC1_TotalAnnualMaxNewCapacityConstraint

NewCapacity[r, t, y] ≤ TotalAnnualMaxCapacityInvestment[r, t, y]
3.16.2. NCC2_TotalAnnualMinNewCapacityConstraint

NewCapacity[r, t, y] ≥ TotalAnnualMinCapacityInvestment[r, t, y]
3.17. Annual Capacity Constraints (AAC)

Guarantees that each technology's total annual activity is greater than or less than

the user-defined parameters TotalTechnologyAnnualActivityLowerLimit and
TotalTechnologyAnnualActivityUpperLimit, respectively. This process can be attained
through the use of Sets including Year (y), Region (r), TimeSlice (l) and Technology (t). As
well as the use of Parameters which include Global parameters like YearSplit[l,y] and

Activity constraints which are strictly positive such as

TotalTechnologyAnnualActivityUpperLimit[r,t,y] and
TotalTechnologyAnnualActivityLowerLimit[r,t,y]. Lastly through the use of Variables

which are positive including Activity variables we use RateOfTotalActivity[r,t,l,y] and
TotalTechnologyAnnualActivity[r,t,y].

3.17.1. AAC1_TotalAnnualTechnologyActivity

TotalTechnologyAnnualActivity[r, t, y] = ∑(RateOfTotalActivity[r, t, l, y] × YearSplit[l, y])

l

3.17.2. AAC2_TotalAnnualTechnologyActivityUpperLimit

TotalTechnologyAnnualActivity[r, t, y] ≤ TotalTechnologyAnnualActivityUpperLimit[r, t, y]
3.17.3. AAC3_TotalAnnualTechnologyActivityLowerLimit

TotalTechnologyAnnualActivity[r, t, y] ≥ TotalTechnologyAnnualActivityLowerLimit[r, t, y]
3.18. Total Activity Constraints (TAC)

Guarantees that the total activity of each technology is greater than or less than the
user-defined parameters for the entire model period,
TotalTechnologyModelPeriodActivityLowerLimit and
TotalTechnologyModelPeriodActivityUpper-Limit respectively. This process can be
accomplished through the use of Sets such as Year (y), Region (r), and Technology (t).
Additionally through the use of Parameters, which involve Activity constraints which are

strictly positive like TotalTechnologyModelPeriodActivityUpperLimit[r,t,y] and

TotalTechnologyModelPeriodActivityLowerLimit[r,t,y]. Ultimately through the use of
Variables which include positive Activity variables such as
TotalTechnologyModelPeriodActivity[r,t] and TotalTechnologyAnnualActivity[r,t,y].

3.18.1. TAC1_TotalModelHorizonTechnologyActivity

TotalTechnologyModelPeriodActivity [r, t] = ∑ TotalTechnologyAnnualActivity[r, t, y]

y

3.18.2. TAC2_TotalModelHorizonTechnologyActivityUpperLimit

TotalTechnologyModelPeriodActivity[r, t]

≤ TotalTechnologyModelPeriodActivityUpperLimit[r, t]
3.18.3. TAC3_TotalModelHorizenTechnologyActivityLowerLimit

The algebraic formulation of the open-source energy modeling system (OSeMOSYS)

18

TotalTechnologyModelPeriodActivity[r, t]
≥ TotalTechnologyModelPeriodActivityLowerLimit [r, t]

3.19. Reserve Margin Constraints (RM)

Guarantees that the user-defined ReserveMargin is maintained by installing

sufficient reserve capacity of particular technologies (ReserveMarginTagTechnology = 1).
This process can be successful through the use of Sets like Year (y), Region (r), TimeSlice
(l) and Fuel (f). As well as the use of Parameters in terms of Performance such as
CapacityToActivityUnit[r,t] and Reserve Margin in which we use

ReserveMarginTagTechnology[r,t,y], ReserveMarginTagFuel[r,f,y] and
ReserveMargin[r,y]. Also through the use of Variables which are positive including Activity

variables such as RateOfProduction[r,l,f,y], Capacity variables like
TotalCapacityAnnual[r,t,y], and Reserve Margin Variables such as
TotalCapacityInReserveMargin[r,y] and DemandNeedingReserveMargin[r,l,y].

3.19.1. RM1_ReserveMargin_TechnologiesIncluded_In_Activity_Units

TotalCapacityInReserveMargin[r, y]

= ∑(TotalCapacityAnnual[r, t, y] × ReserveMarginTagTechnology[r, t, y]

t

× CapacityToActivityUnit[r, t])

3.19.2. RM2_ReserveMargin_FuelsIncluded

DemandNeedingReserveMargin[r, l, y]

= ∑(RateOfProduction[r, l, f, y] × ReserveMarginTagFuel[r, f, y])

f

3.19.3. RM3_ReserveMargin_Constraint

TotalCapacityInReserveMargin[r, y]
≥ DemandNeedingReserveMargin [r, l, y] × ReserveMargin[r, y]

3.20. RE Production Target (RE)

Guarantees that production from renewable energy technologies
(RETagTechnology = 1) meets the user-defined renewable energy (RE) target. This
procedure can be achieved through the use of Sets which include Year (y), Region (r),
TimeSlice (l), Fuel (f) and Technology (t). In addition, through the use Parameters in terms

of Global parameters like YearSplit[l,y] and RE Generation target such as
RETagTechnology[r,t,y], RETagFuel[r,f,y] and REMinProductionTarget[r,y]. Eventually
through the use of Variables which are positive including Activity variables we have

ProductionByTechnologyAnnual[r,t,f,y], ProductionByTechnology[r,l,t,f,y],
RateOfProduction[r,l,f,y], RateOfUseByTechnology[r,l,t,f,y] and
UseByTechnologyAnnual[r,t,f,y]. Finally we use Reserve Margin variables such as

TotalREProductionAnnual[r,y] and RETotalProductionOfTargetFuelAnnual[r,y].
3.20.1. RE1_FuelProductionByTechnologyAnnual

ProductionByTechnologyAnnual [r, t, f, y] = ∑ ProductionByTechnology [r, l, t, f, y]

l

3.20.2. RE2_TechIncluded

TotalREProductionAnnual[r, y]

= ∑ ProductionByTechnologyAnnual[r, t, f, y] × RETagTechnology[r, t, y]

t,f

3.20.3. RE3_FuelIncluded

RETotalProductionOfTargetFuelAnnual[r, y]

= ∑(RateOfProduction[r, l, f, y] × YearSplit[l, y] × RETagFuel[r, f, y]

l,f

)

3.20.4. RE4_EnergyConstraint

Souhila BENBRAHIM & Saloua CHAOUCHE QOUIDRAT & Rachid TOUMACHE

19

TotalREProductionAnnual[r, y]
≥ REMinProductionTarget[r, y]
× RETotalProductionOfTargetFuelAnnual[r, y]

3.20.5. RE5_FuelUseByTechnologyAnnual

UseByTechnologyAnnual[r, t, f, y] = ∑(RateOfUseByTechnology[r, l, t, f, y] × YearSplit [l, y])

l

3.21. Emissions Accounting (E)

Calculates each technology's annual and model period emissions for each category
of emission. It also estimates any relevant total emission penalties. Fina lly, it guarantees that

emissions do not exceed predetermined limitations, which can be set for each year or the
entire model period. This operation can be accomplished through the use of Sets such as Year
(y), Region (r), Technology (t), Emission (e) and Mode_Of_Operation (m). As well as
through using Parameters including Global Parameters which are strictly positive like

DiscountRate[r] and in Emissions we use EmissionActivityRatio[r,t,e,m,y],
EmissionsPenalty[r,e,y], ModelPeriodEmissionLimit[r,e],
ModelPeriodExogenousEmission[r,e], AnnualEmissionLimit[r,e,y] and
AnnualExogenousEmission[r,e,y]. Ultimately through the use of Variables which are
positive including Activity variables TotalAnnualTechnologyActivityByMode[r,t,m,y].
And Reserve Margin variables such as AnnualTechnologyEmissionByMode[r,t,e,m,y],

AnnualTechnologyEmission[r,t,e,y],
AnnualTechnologyEmissionPenaltyByEmission[r,t,e,y],
AnnualTechnologyEmissionsPenalty[r,t,y], DiscountedTechnologyEmissionsPenalty[r,t,y],
AnnualEmissions[r,e,y] and ModelPeriodEmissions[r,e].

3.21.1. E1_AnnualEmissionProductionByMode

AnnualTechnologyEmissionByMode[r, t, e, m, y]

= EmissionActivityRatio[r, t, e, m, y]
× TotalAnnualTechnologyActivityByMode[r, t, m, y]

3.21.2. E2_AnnualEmissionProduction

AnnualTechnologyEmission[r, t, e, y] = ∑ AnnualTechnologyEmissionByMode[r, t, e, m, y]

m

3.21.3. E3_EmissionsPenaltyByTechAndEmission

AnnualTechnologyEmissionPenaltyByEmission[r, t, e, y]

= AnnualTechnologyEmission[r, t, e, y] × EmissionsPenalty[r, e, y]
3.21.4. E4_EmissionsPenaltyByTechnology

AnnualTechnologyEmissionsPenalty [r, t, y]

= ∑ AnnualTechnologyEmissionPenaltyByEmission [r, t, e, y]

𝑒

3.21.5. E5_DiscountedEmissionsPenaltyByTechnology

DiscountedTechnologyEmissionsPenalty[r, t, y] =
AnnualTechnologyEmissionsPenalty [r, t, y]

(1 + DiscountRate [r])(y−min(yy)+0.5)

3.21.6. E6_EmissionsAccounting1{r in REGION, e in EMISSION, y in YEAR}:

AnnualEmissions[r, e, y] = ∑ AnnualTechnologyEmission [r, t, e, y]

t

3.21.7. E7_EmissionsAccounting2{r in REGION, e in EMISSION}:

∑ AnnualEmissions[r, e, y] =

𝑦

ModelPeriodEmissions[r, e]

− ModelPeriodExogenousEmission[r, e]
3.21.8. E8_AnnualEmissionsLimit

AnnualEmissionLimit[r, e, y] ≥ AnnualEmissions [r, e, y] + AnnualExogenousEmission[r, e, y]
3.21.9. E9_ModelPeriodEmissionsLimit{r in REGION, e in EMISSION}:

The algebraic formulation of the open-source energy modeling system (OSeMOSYS)

20

𝑀𝑜𝑑𝑒𝑙𝑃𝑒𝑟𝑖𝑜𝑑𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠[𝑟, 𝑒] <= 𝑀𝑜𝑑𝑒𝑙𝑃𝑒𝑟𝑖𝑜𝑑𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡[𝑟, 𝑒]

4- CONCLUSION:

This paper summarized the mathematical algebraic formulation, with a plain description

of sets parameters and variables used in each block of OSeMOSYS. What makes the use of

OSeMOSYS interesting is its open accessible nature, clear levels of abstraction and the

potential for its use and development of an online community, where new development ideas

can be proposed, showcased, and executed. This is aimed at promoting meaningful model

development through academic projects in particular (including, for example, postgraduate

student input in the form of thesis work). Open workshops (such as those hosted by KTH

(Royal Swedish Institute of Technology)).

BIBLIOGRAPHY:

1. Dato, P., Dato, P., & Grenoble, U. (2017). La transition énergétique To cite this

version : HAL Id : tel-01445740.
2. Doukas, H., Flamos, A., & Lieu, J. (2019). Understanding Risks and Uncertainties

in Energy and Climate Policy.
3. Howells, M., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S.,

Hughes, A., Silveira, S., DeCarolis, J., Bazillian, M., & Roehrl, A. (2011).

OSeMOSYS: The Open Source Energy Modeling System. An introduction to its
ethos, structure and development. Energy Policy, 39(10), 5850–5870.
https://doi.org/10.1016/j.enpol.2011.06.033.

4. Welsch, M., Howells, M., Bazilian, M., DeCarolis, J. F., Hermann, S., &

Rogner, H. H. (2012). Modelling elements of Smart Grids - Enhancing the
OSeMOSYS (Open Source Energy Modelling System) code. Energy, 46(1), 337–

350. https://doi.org/10.1016/j.energy.2012.08.017.
5. OSeMOSYS Documentation Release 0.0.1 KTH-dESA. (2021).
6. http://www.osemosys.org

7. https://github.com/OSeMOSYS/OSeMOSYS

https://doi.org/10.1016/j.enpol.2011.06.033
https://doi.org/10.1016/j.energy.2012.08.017
http://www.osemosys.org/
https://github.com/OSeMOSYS/OSeMOSYS

