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Abstract –A numerical study of Rayleigh-Bénard convection in a rectangular cavity has been 

presented. The onset of natural convection and the transition to oscillatory convection were 

considered in this study. The finite volume method was used to solve numerically the governing 

equations of the phenomenon. The pressure-velocity coupling was matched by SIMPLER Algorithm 

of Patankar. The study concerned has been made for the Rayleigh number varied from 10
3
 to 10

6
 in 

order to define the Rac1 corresponding to the onset of convection for the different aspect ratio of 

the cavity. The transition threshold regime laminar-Oscillatory convection which is defined by Rac-2 

is determined and discussed. In addition a discussion of the different modes of bifurcation of 

convection were also determined and discussed. 

 

Keywords: Rayleigh-Bénard convection, natural convection, oscillatory flow, bifurcation. 

 

 

I. Introduction 

Due to its practical importance in many general science 

and engineering applications, Rayleigh–Bénard 

convection has been the subject of many theoretical, 

experimental, and numerical studies. Since, Rayleigh–

Bénard convection presents the evolution from the 

stationary state to the fully developed turbulent regime 

with many different flow patterns and sequences of 

bifurcations; it is widely investigated as the problems of 

different transition mechanisms in hydrodynamics [1-2]. 

Most of the published works covering natural convection 

in enclosures that exist today can be classified into two 

categories: differentially heated enclosures [3-5] and 

enclosures heated from below and cooled from above 

(Rayleigh Bénard problems)  [6-8]. Benchmark solutions 

related to differentially heated enclosures (first group) can 

bee found in many numerical investigations [9-12]. 

However, numerical benchmark solutions related to the 

simplest case of 2D Rayleigh-Bénard convection are less 

encountered in the literature. 

Some recent development in turbulent Rayleigh-Bénard 

convection was talked by Lappa, 2011 [13]. As usual, the 

case of two dimensional square enclosures is considered; 

he begins by the bifurcation and the symmetry breaking 

system. He found four cases of possible symmetries, one 

cell, two horizontal cells, two vertical cells, and four cells. 

At the beginning of bifurcation for Rac1, they can see the 

one cell case. For the time dependence, other forms can 

appear following the oscillatory mode, in second part he 

aboard the turbulence appearing for Ra= 10
8
 and Pr = 15. 

Venturi et al., 2010 [14], studied the stochastic bifurcation 

and stability of the natural convection of Rayleigh-Bénard 

by different stochastic modelling approaches. They 

focused on fluid in the supercritical state and studied the 

value of Rac1 in square cavity (2585). They focused also 

on the sensibility of the initial conditions, Bifurcation in 

steady state. 

To controlling the amplitude of bifurcated solutions 

Chen et al., 1999 [15], showed that the amplitude of the 

bifurcated solutions is directly related to the so-called 

bifurcation stability coefficient. The bifurcation amplitude 

control is applied to the active control of Rayleigh-Bénard 

convection. Mas et al., 2004[16], studied the bifurcation 

and stability of the solutions of the Boussinesq equations, 

and the onset of the Rayleigh-Bénard convection. A 

nonlinear theory for this problem is established in this 

article using a new notion of bifurcation called attractor 

bifurcation.  

Kao et al., 2007 [17], studied the Rayleigh-Bénard 

convection by the Lattice Boltzmann method. The critical 

Rayleigh number value Rac1  is independent from the 

Prandtl number. In the fact, they have found a relationship 

between Prandtl, Rayleigh and Nusselt number using Pr 

between 0.71 and 70. They concluded that the method is 

mailto:fibonsaid@gmail.com
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simple and useful for study of Rayleigh-Bénard. Yachitaka 

et al., 2012 [18], giveed a method to verify the existence of 

bifurcating solutions of the two-dimensional problem and 

the bifurcation point itself.  

In the work of Angeli et al., 2011 [19], the system 

considered is an air-filled, square-sectioned 2D enclosure 

containing a horizontal heated cylinder. The results are 

shown respecting the variation of the Rayleigh number, 

and changing the three values of the aspect ratio A. 

Chaotic flow features are detailed for the case of A = 2.5, 

for which the nature of the first bifurcations of the low 

Rayleigh number (Ra) fixed point solution, and the related 

critical Rayleigh number values were determined. Finally, 

the analysis of global heat transfer data showed that the 

Nu and Ra relationship is sensibly influenced by the 

transition mode associated with each a value. A correlating 

equation for the average Nusselt number on the cylinder, 

derived for the sub critical case, was found to be valid up 

to slightly supercritical Ra-values.  

 Recently, Raji et al., 2013 [20], presented a 

numerical results of the natural convection in a square 

cavity filled with air, the temperature of the lower 

horizontal surface is kept constant(hot), while that of the 

upper surface (cold temperature), the remaining upright 

walls are considered adiabatic. The Rayleigh number (10
3
 

< Ra < 7×10
6
, three different solutions are obtained 

(single-cell flow, two-cell vertical flow and horizontal 

flow bicellular). 

 The aim of this study is to propose two dimensional 

numerical solutions related to natural convection in a 

square enclosure heated from below and cooled from 

above. We are interested to the determination of the onset 

of natural convection and the transition from laminar to 

oscillatory convection in Rayleigh –Bénard configuration. 

The effect of aspect ratio on the two cases was also 

examined. 

II. Geometry of the problem and 

Mathematical formulation 

The cavity which is heated from below and cooled from 

above corresponds to the configuration of the Rayleigh-

Bénard dealing with the stability and motion of a fluid 

confined between two horizontal plates that are 

maintained at uniform temperatures (Fig. 1).  

We consider the flow is incompressible and satisfied 

the Boussinseq approximation. To give the conservation 

equation in dimensionless form, we have used the 

dimensionless variables respectively: ,
H

x
X   

H

y
Y  , 

,
H

u
U




H

v
V




 
,

2
H

p
P




fC

f

TT

TT




 ,




2H

t
 , for Cartesian coordinates, velocity 

components, the pressure, temperature and the time 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Schematic configuration of Rayleigh-Bénard probleme. 

 

After, we obtained the dimensionless equation form as 

following:  

 

- Mass conservation equation 

0
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





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U
                                                           (1) 

- X-momentum equation: 
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- Y-momentum equation:  





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
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- Energy equation : 


















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
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2

2
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1
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             (4) 

 

The obtained parameters of flow appear in the equation 

(1-4) are: Rayleigh number and Prandtl number defined 

respectively as:


 THg
Ra




3

and 



Pr . 

The initial and boundary conditions are given as following 

equations: 

At 0 : 0VU  and 1                                   (5a) 

At 0 : 

 0Y  : 10  X , 0VU ,  1                (5b) 

 1Y : 10  X , 0VU , 0                  (5c) 

 1,0X : 10 Y , 0VU , 0 X      (5d) 
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III. Numerical resolution 

The systems equation (Eqs.1-4) associate with initial 

and boundary conditions (Eqs.5a-d) has been solved by 

finite-volume method [21]. The Quick scheme is used for 

discretization of convective and diffusive terms. The 

couple’s velocity-pressure is solved by SIMPLER 

Algorithm. The obtained algebraic equations are solved by 

the line-by-line tri-diagonal matrix algorithm (TDMA). 

The convergence is declared when the maximum relative 

change between two consecutive iteration levels fell below 

than 10
-4

. Calculations are carried out on a PC with CPU 

3 GHz. 

The grid independency of the numerical solution was 

established on a careful analysis of three grids (60×60), 

(80×80) and (100×100); we have used a refined grid in the 

lower and upper wall, due to the existence of a strong 

temperature and velocity gradients near this walls, refining 

value is equal to 1.05. We assume for this purpose the 

case of a steady natural convection flow with Ra = 10
4
. 

The Table 1, show the grids effect on the deferent flow 

parameter (Ѱ, U, V, and Nu).  In table 2, we have 

compared our results with those of Ben Cheikh [3], and 

found good agreement with our results, even if our grid 

seems coarse, we find that it is consistent with the 

literature, like Venturi [14] and Gelfgat [22]  which used 

the same kind of grid, and Shishkina[23] determine the 

minimum number of nodes to have an accurate result. This 

grid is considered to show the best compromise between 

computational time and precision. 

 

Table 1. Flow Parameter: Ѱmax, Numoy, maxV , maxU ,for 

different grid size (Ra = 104). 

 

Grid size 

 

Ѱmax 

 

Numoy maxV  maxU  

60 60 321.79 2.1 26.54 25.7 

80 80 316.61 2.02 27.81 26.07 

100 100      316.43 1.98 27.29 26.18 

 

 

Table 2.  Comparison of our results, with those of [3] for Ra =104 

Our results Results of Ben 

Cheikh et al. 

[3] 

Relative 

error % 

maxV  maxU  maxV  maxU  maxV  maxU  

26.54 25.7 26.36 25.22 0.68 1.9 

IV. Results and discussions 

All the resultats presented herein are given in the 

dimensionless form.  To allocate more confidence in our 

numerical results, we have established some comparisons 

with other studies available in the literature. One with the 

benchmark solution (Table 3), the work of Val Davis [10], 

and the second was made with Rayleigh-Bénard 

convection (Table 4), studied by Turan [24]. 

We begin with a comparison of Nusselt number 

progress in Rayleigh-Bénard convection with those of 

Turan [24] and the Benchmark results [24], as given in 

Table 4. We can see a little relative error between the 

results, less than the1.5% of our results. 

The second comparaison is made with the works of Val 

Davis [10], presented on the Table 4. In this case the heat 

gradient is horizontal. The results compared shows a good 

agreement of the results with a very small difference error 

for all flow parameter. 
Table 3.  Comparison of our results with those of Turan [24] and 

Benchmark [10]. 

 
Table 4. Comparison of our results with those of Val Davis [10]. 

 

 

 

 

 

 

 

IV.1. Onset of natural convection 

The heat convection mode is started by energy 

accumulation (conduction) then the flow motion. The 

beginning of the convection in the case of Rayleigh-

Bénard convection, Then we will proceed to the 

consideration of the phenomenon begin by studying the 

threshold of the beginning of the convection in the case of 

Rayleigh-Bénard convection, and then calculate the 

critical value of Rayleigh and see the effect of the aspect 

ratio on this critical value, we will compare it with the 

theoretical result; and then make a close approach to the 

cavity of infinity, then we will consider the extension of 

the cavity.  

A linear stability analysis of the Boussinesq equations 

about the linearly conducting profile between two infinite 

horizontal no-slip plates shows that the critical Rayleigh 

number Rc1 ≈ 1707.76, the values of Rc1 is independent of 

the Prandtl number [22], This critical value is necessary to 

determinate the mode of heat transfer; it represents the 

threshold of the onset of convection and the first 

bifurcation flow structure. 

We examine the effect of the aspect ratio on the first 

Rayleigh critical number (Rac1). Four aspect ratios of the 

Rayleigh-Bénard cavity were examined in this work are A 

= 1, 2, 4 and 8. In Figure 2, we present the average Nusselt 

number along the hot wall in function of Rayleigh number. 

The value of Rac1 on various aspect ratios is given in 

Table 5. 

 

Ra 

Our 

result

s 

Results of   

Turan [24] 

Benchmark 

Results 

[10] 

Relative 

error with 

[24] (%) 

10
3 

1 1 .0004 1 0.039 

10
4 

2.2 2.1581 2.154 1.49 

10
5 

3.9 3.9103 3.907 0.26 

10
6 

6.4 6.3092 6.36 1.439 

Ra     [10] Nu Nu [10] 

10
3 

1.171 1.170 1.118 1.117 

10
4 

5.061 5.059 2.25 2.240 

10
5 

9.147 9.059 4.53 4.505 

10
6 

16.22 16.24 8.9 8.810 
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We note that although the aspect ratio has an influence 

on the value of Rac1 therefore the fluid motion is 

depending with the geometry of the cavity. In the 

literature, they found that for infinite cavity Rac1 = 1708 

but for a square cavity (A = 1) the value of critical 

Rayleigh is much greater (Rac1 = 2585.01). In Table 6, we 

compare our results of Rac1 for a different aspect ratio 

with the results of Gelfgat [22]. A good agreement was 

obtained with results from the literature. 

 

 
 
Figure 2. Average Nusselt Number in function of Rayleigh number 

for aspect ratio A = 1, 2, 4 and 8. 

 

Table 5. Critical Raleigh number for different aspect ratio. 

 

Aspect ratio 1 2 4 8 

Rac1 2585.01 2013.5 1810 1752 

IV.2. Onset of oscillatory natural convection 

 At the beginning of the convection the flows are 

laminar and do not depend on time, but after a certain 

value Ryeigh number, there will appear an oscillating state 

and the beginning of the time dependence. We will 

confirm that the oscillations are physical in origin, and 

then make an evaluation for different probes into the 

cavity.  

According to linear theory, a significant change in 

convection will take place as soon as the critical Rayleigh 

number is exceeded and Rayleigh-Bénard problem will 

become nonlinear. In our study we found that the time 

dependente flow begins at around 16 Rac1, it’s the 

oscillatory mode. The critical value of this mode is Rac2= 

4.58×10
4
. To view the physical scillatroy flow, we have 

chosen many arbitrary probes in the cavity. 

In order to determine the beginning of the unsteady 

state, we note that the steady state is obtained up to the 

value of Ra = 4×10
4
 (Figure 3a). However, past the value 

of Rac2 = 4.58×10
4
, the flow becomes oscillatory (Figure 

3b). To show that the oscillations are not numerical but 

physical, for that we will fixe a probe in our cavity with 

the same flow parameter but we reduce the time step to the 

half, the Figure 4 shows that there is no influence of the 

time step on the oscillation amplitude. So these 

instabilities are physical and not numerical.  Another test 

of oscillatory mode is the phase portrait as showing in 

Figure 5. The phase portraits reflect the change of 

hydrodynamic and thermal parameters between them. So, 

for a periodic oscillatory regime at point in flow, these 

changes are closed circles reflect the periodicity of the 

flow regime. Moreover, for no periodically oscillations 

these changes appear become the endpoints or other 

unordered structure.  

Oscillatory flow regime occurs for the critical value of 

Rayleigh number 4.58×10
4
. We note that steady state is 

obtained up to the value of Rayleigh number Ra = 4×10
4
. 

For illustrate the temporal evolution of the horizontal, 

vertical velocity component, and temperature, we chose the 

same probes (P1, P6, P7 ,P8)  in the cavity to look into the 

field, and the results are shown in Figures 6a-c. 

 
Table 6. Physical location of measurement probes. 

 

/ P1 P2 P3 P4 

X 0.5 0.75 0.75 0.25 

Y 0.5 0.75 0.25 0.25 

/ P5 P6 P7 P8 

X 0.25 0.2 0.1 0.6 

Y 0.75 0.1 0.4 0.9 

 

It is clear that these profiles are oscillatory and 

periodic, so the flow regime is unstable. We observe that 

the amplitude of these oscillations changes from one point 

to another in the enclosure. The difference in the degree of 

oscillation depends on the location of probes in relation to 

walls adiabatic to the hot wall and the cold wall.  For 

example, probe 1 (Table 6) is in the centre of the 

enclosure, the probes 6, 7 and 8. Probes 2, 3, 4 and 5 are 

used to explain the wave propagation flow. 

 

 
a) Ra = 4× 104. 
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 (b) Rac2 = 4.58×104 

 

Figure 3.Time-dependente of dimensionless vertical velocity at the 

probe P1 for two value of Rayleigh number. 

 
Figure 4. Time dependente of vertical velocity componente for two 

time setp in P1 (chosed arbirary) and for Rac2 = 4, 58 ×104 

 

 
Figure 5. Phase portrait of horizontal velocity component in function 

of temperature at point P2 ( chosed arbirary), for Rac2 = 4, 58 ×104. 

 
(a) Dimensioless horizontal velocity component U. 

 
(b) Dimensionless vertical velocity component V. 

 
(c) Dimensionless temperature. 

 

Figure 6. Time-dependente of dimensionless horizontal (a), vertical 

velocity component (b) and dimensionless temperature (c), in probes 

P1, P2, P3, P4, P5, P6, P7 and P8 (chosing arbirary), for Rac2 = 4,58× 

104. 

 

The amplitude of the temperature is greater on the hot 

wall, as the particles back into the wall; it means average 

amplitude of the adiabatic wall. But there are small 

amplitude for the center point and the cold wall. 

It is clearly noticed on the probes 2 and 5, the same 

amplitude, the same structure of the wave, except in phase 

shift is due to the wave propagation, similarly for the 

probes 3 and 4 with smaller amplitude. 

To better understand the oscillatory flow we have 

presente the time-dependente flow in a period of time for 

Rac2 = 4,58×10
4
 (Figure 7), and illustrate the structure of 
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the flow by the stream line evolution over time in one 

period of time (at the time τa, τb, τc, τd, τe and τf). It was 

found that the flow remains unstable and unicellular 

streamlines which looks oscillatory (Figures 8a-g). we can 

see tow cells counter rotating, the left one is bigger than 

the Second, after they have the same shape in the 

symmetry case, after the right one becomes bigger. 

For the isotherms, we can see that the head of the 

mushroom move slowly between the left side and the 

central axe of the cavity. In the next time period it will 

move from the central axe to the right side (Figure 9a-g). 

 

 
 
Figure 7. Time- evolution of the vertical velocity component in τ =1, 

for Rac2 = 4, 58 × 104. 
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Figure 8. Stream line flow over time for one period of time for  

Rac2 = 4.58× 104. 
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Figure 9. Isotherm line over time in one period of time for  

Rac2 = 4.58×104. 
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IV.3. Flow Bifurcation 

The bifurcation flow in the cavity and the different 

forms that may have: bifurcated cells, unicellular, two 

vertical cells, two horizontal cells. This study will be made 

up of Rac1 to Ra = 10
6
.  Now, we are going to talk abut 

bifurcation as we have discussed in the first is a condition 

that causes a small change in the physical state a big 

change. We can observe different bifurcation flow 

structures which are shown in Table 7. 

 
Table 7.  Flow Structure for different Rayleigh numbers. 

Ra Cell number and 

disposition 

Flow regime 

[2.5×10
3
, 

1.8×10
4
] 

Unicellular  

(UC) 

Steady state  

[1.9×10
4
, 

4.57×10
4
] 

 Two   vertical 

cells (2VC) 

Steady state 

[4.58×10
4
, 

4.99×10
4
] 

Two vertical 

cells (2VC) 

periodic 

oscillatory 

[5×10
4
, 4.1×10

5
] Unicellular  

(UC) 

Steady state 

[4.2×10
5
, 10

6
] Two  horizontal 

cells (2HC) 

periodic 

oscillatory 

The Figure 10, represente the logarithmic bifurcation 

diagram of Rayleigh-Bénard convection. The figure also 

summarizes the stream lines and isothermal line according 

the Rayleigh number. 

The first bifurcation is observed for Rac1, which 

represents the transition from conduction to convection 

(onset of convective). This bifurcation is represented by 

the one principal cell in the middle of the cavity and with 

a clockwise flow direction. Followed by another 

bifurcation appears for the value of 1.9×10
4
. In this case 

the basic unit of our convection (UC) is divided in two, 

two vertical cell (2VC), one cell with a clockwise 

direction and the other has a counter clockwise, to move 

on impulse isothermal lines. In this case the particles do 

not lie near the adiabatic wall but in the center of the hot 

wall and the cold particles come down almost close of the 

two adiabatic walls, it will create the form that resembles a 

mushroom. Rayleigh-Bénard convection is very sensitive 

area which has a lot of bifurcations, as a result the two cell 

bifurcation; at 5×10
4
, another single bifurcation cell 

appear so similar to the first. Finally, for the value 

4.2×10
5
, it has two cells but this case, they are horizontal 

(2HC), hot and cold particles, go up and down on one and 

the same adiabatic wall. 

 

 
Figure 10. Logarithmic bifurcation diagram of Rayleigh-Bénard 

convection. The figure also summarizes Stream lines and isothermal 

line.   

V. Conclusion 

A numerical study of Rayleigh-Bénard convection in a 

rectangular cavity has been presented. The onset of natural 

convection and the transition to oscillatory convection 

were considered in this study. 

The study concerned has been made for the Rayleigh 

number varied from 2.5×10
3
 to 10

6
 in order to define the 

Rac1 corresponding to the onset of convection for the 

different aspect ratio of the cavity. The transition 

threshold regime laminar-Oscillatory convection which is 

defined by Rac2 is determined. In the range studied there 

five modes bifircation of Rayleigh-Bénard convection in 

the range studied: unicellular (UC), two vertical cells 

(2VC) in steady state, two vertical cells (2VC) in 

oscillatory periodic state, and two horizontal cells (2HC) 

in oscillatory periodic state. 
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Nomenclature 

C : Specific heat at constant pressure [J.kg-1.K-1] 

g : Acceleration of gravity  [m.s-2] 

H : Dimensional height of the enclosure  [m] 

W: Dimensional width of the enclosure [m] 

A : Aspect ratio [-] 

P : Dimensionless pressure[-]  

Q: Heat Flux [W] 

vu,  : Speeds components [m.s-1] 

VU , : Dimensionless speeds components [-] 

T : Dimensional temperature [K] 

yx, : Dimensional coordinate space [m] 

YX , : Dimensionless coordinate space [-] 

t : Dimensional time [s] 

 

Greek symbols 

 : Thermal diffusivity [m2.s-1] 

 : Thermal conductivity of the fluid [w.m-1.K-1] 

 : Diffusion coefficient [-] 

 : Kinematics viscosity [m2.s-1] 

 : Dynamic viscosity [kg.s-1.m-1] 

 : Density [kg.m3] 

 : dimensionless time [-] 

β : Coefficient of thermal expansion at constant pressure [K-1] 

 : Dimensionless temperature [-] 

T Temperature difference [K] 

 

Dimensionless Numbers 

Ra   Rayleigh number  

1cRa  First critical Rayleigh number (onset of convection) 

2cRa  Second critical Rayleigh number (oscillatory convective 

flow) 

Nu   Nusselt number  

Pr   Prandtl number 
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