
 

Available online at https://www.asjp.cerist.dz/en/PresentationRevue/134 

RIST 

 Information Processing at the Digital Age Journal. 

Volume 25, No 1 (2020). 1- 12. 

Special issue from the conference 

Organization of Knowledge and Advanced 
Technologies (OCTA) 

https://multiconference-octa.loria.fr/ 
 

 

 

 

Classification of Hate Speech Using Deep Neural 

Networks. 

Ashwin Geet D’Sa, Irina Illina, Dominique Fohr 

Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France 

Abstract 

In the Internet age where the information flow has grown rapidly, there is an increase in digital communication. The 

spread of hatred that was previously limited to verbal communications has quickly moved over the Internet. Social media 

and community forums that allow people to discuss and express their opinions are becoming platforms for the 

dissemination of hate messages.  Many countries have developed laws to prevent online hate speech. They hold the 

companies that run the social media responsible for their failure to remove hate speech. However, manual analysis of hate 

speech on online platforms is infeasible due to the huge amount of data as it is expensive and time consuming. Thus, it is 

important to automatically process the online user contents to detect and remove hate speech from online media. Through 

this work, we propose some solutions for the problem of automatic detection of hate messages. We perform hate speech 

classification using embedding representations of words and Deep Neural Networks (DNN). We compare fastText and 

BERT (Bidirectional Encoder Representations from Transformers) embedding representations of words. Furthermore, we 

perform classification using two approaches: (a) using word embeddings as input to Support Vector Machines (SVM) and 

DNN-based classifiers; (b) fine-tuning of a BERT model for classification using a task-specific corpus. Among the DNN-

based classifiers, we compare Convolutional Neural Networks (CNN), Bi-Directional Long Short Term Memory (Bi-

LSTM) and Convolutional Recurrent Neural Network (CRNN).  The classification was performed on a Twitter dataset 

using three classes: hate, offensive and neither classes. Compared to the feature-based approaches, the BERT fine-tuning 

approach obtained a relative improvement of 16% in terms of macro-average F1-measure and 5.3% in terms of weighted 

F1-measure. 
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1. Introduction 

Hate speech expresses an anti-social behavior. The topics of the hate can be gender, race, religion, 

ethnicity, etc. (Delgado and Stefancic, 2014). There is no clear definition of the term hate speech.  The 

Council of European Union defines hate speech as: “All forms of expression which spread, incite, promote or 

justify racial hatred, xenophobia, antisemitism or other forms of hatred based on intolerance, including 

intolerance expressed by aggressive nationalism and ethnocentrism, discrimination and hostility towards 

minorities, migrants and people of immigrant origin.”
1
. In the following of this paper, we will consider hate 

and offensive speech. There are few examples of hate speech: 

She look like a tranny. 

You Asian, they will deport you when they see your eyes. 

I'm not going to believe any of the stupid rumors I hear about jews being friends of Christians. 

We hate niggers, we hate faggots and we hate spics 

Hate speech can be expressed in different forms. Explicit hate speech contains offensive words such as 

‘fuck’, ‘asshole’.  Implicit hate speech can be realized by a sarcasm and irony (Waseem et al., 2017; Gao et 

al., 2017). While explicit hate speech can be identified using the lexicons that forms the hate speech, implicit 

hate speech is often hard to identify and requires semantic analysis of the sentence. There are few examples of 

implicit hate speech: 

Affirmative action means we get affirmatively second rate doctors and other professionals. 

I will remove all your organs in alphabetical order. 

She looks like a plastic monkey doll! 

Hate content on the Internet platform can create fear, anxiety and threat to the individuals. In the case of a 

company or online platform, company or platform may lose its reputation or the reputation of its product. 

Failure to moderate these contents may cost the company in multiple ways: loss of users, drop in stocks
2
, 

penalty from legal authority
3
, etc. 

Most of the online platforms such as social media or the forums, generally cannot be held responsible for 

the propagating of hate speech. However, their inability to prevent its use is the reason for the spread of hate. 

A report from the news article states that during the recent crisis of COVID-19, there has been a 900 percent 

surge in the hate speech against people from China and other Asian origins on Twitter.
4
 

In many countries, online hate speech is an offense and it is punishable by the law. In this case, the social 

medias are held responsible and accountable if they do not remove hate speech content promptly.   

The manual analysis of such content and its moderation are impossible because of the huge amount of data 

circulating on the Internet.  An effective solution to this problem would be to automatically detect and 

moderate the hate speech comments. 

The automatic detection of hate speech is a challenging problem in the field of Natural Language 

Processing (NLP). The approaches proposed for automatic hate speech detection are based on the 

representation of the text in the numerical form and on the use of classification models on these numerical 

representations. In the state-of-the-art on this field, lexical features such as word and character n-grams 

                                                           
1https://www.article19.org/data/files/medialibrary/3548/ARTICLE-19-policy-on-prohibition-to-incitement.pdf 
2https://www.telegraph.co.uk/technology/2018/07/27/twitter-stock-sinks-reporting-decline-active-users/ 
3https://www.cnet.com/news/german-hate-speech-law-goes-into-effect-on-1-jan/ 
4https://news.yahoo.com/coronavirus-huge-surge-hate-speech-toward-chinese-twitter-204335841.html 
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(Nobata et al., 2016), Term Frequency-Inverse Document Frequency (TF-IDF), Bag of Words (BoW), polar 

intensity, noun patterns (Wiegand et al., 2018) are used as input features. Recently, word embeddings have 

been used as an alternative to these lexical features. Multi-features-based approach combining various 

lexicons and semantic-based features is presented by (Almatarneh et al., 2019). (Liu et al.,2019) used fuzzy 

methods to classify ambiguous instances of hate speech. 

The notion of word embedding is based on the idea that, semantically and syntactically similar words must 

be close to each other in an n-dimensional space (Mikolov et al., 2013). The embeddings trained on huge 

corpus of data captures generic semantics of the words. Word2Vec embeddings and character n-gram features 

as input to CNN has been compared by (Gambäck et al., 2017). (Djuric et al., 2015) proposed low dimension 

sentence representation using paragraph vector embeddings (Le and Mikolov, 2014).  Global Vectors for word 

representation (GloVe) (Pennington et al., 2014) and random embeddings as input to DNN classifiers has 

been compared by (Badjatiya et al. 2017).  Recently, sentence embeddings (Indurthi et al., 2019) and 

Embeddings from Language Models (ELMo) (Bojkovský et al., 2019) were used as input to classifiers for 

hate speech comment classification.    

Deep-learning techniques have shown to be very powerful in classifying hate speech (Mohaouchane et al., 

2019; Del Vigna et al., 2017). The performance of the deep-learning based approaches has outperformed the 

classical machine learning techniques such as Support Vector Machines (SVM), Gradient Boosting Decision 

Trees (GBDT) and Logistic Regression (Badjatiya et al., 2017). Among deep-learning based classifiers, 

Convolutional Neural Network (CNN) captures the local patterns in the text (Kim, 2014). The deep-learning 

based Long Short Term Memory (LSTM) model (Baruah et al., 2019) or Gated Recurrent Unit (GRU) model 

(Cho et al., 2014) captures the long-range dependencies. Such properties are important for modelling hate 

speech (Bodapati et al., 2019). (Park et al., 2017) designed hybrid CNN by combining word CNN and 

character CNN to classify hate speech. (Zhang et al.,2018) designed Convolutional Recurrent Neural 

Networks (CRNN) by passing the inputs of CNN to GRU for hate speech classification. (Del Vigna et al., 

2017) showed that LSTMs performed better than SVM for hate speech detection on Facebook. (Founta et 

al.,2018) used an attention layer along with the Recurrent Neural Network (RNN) to improve the performance 

of hate speech classification on longer sequence of text. 

In this article, we propose a multiclass classification approach for hate speech detection using two 

powerful word representations: fastText and BERT embeddings. fastText is based on the skip-gram model, 

where each word is represented as a bag of character n-grams. Thanks to this it is possible to model a large 

vocabulary and take into account rare words. The BERT’s key innovation is to apply the bidirectional training 

of Transformer, a popular attention model, to language modelling. This is in contrast to previous efforts which 

looked at a text sequence either from left to right or combined left-to-right and right-to-left training. A model 

which is bidirectionally trained can have a deeper sense of language context and flow than single-direction 

language models. In our work, we compare these two embeddings for the task of hate speech multiclass 

classification. These representations are used as inputs to DNN classifiers, namely CNN, Bi-LSTM and 

CRNN. Among these DNNs CNN captures local patterns, Bi-LSTM captures long range dependencies within 

a sentence, and CRNN provides a way to combine the advantages of CNN and Bi-LSTM. The multiclass 

classification of hate speech involves fine-grained classification between hate, offensive and ordinary speech.  

Moreover, we explore the capabilities of BERT fine-tuning. This work represents the extension of the work 

presented in (D’Sa et al., 2020). Compared to (D’Sa et al., 2020) we also study the SVM and CRNN. We 

evaluate the proposed approaches on a Twitter corpus. 

The contributions of our paper are as follow: 

 We use fastText embeddings and BERT embeddings as input features to SVM, CNN, Bi-LSTM and CRNN 

classifiers. 
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 We perform fine-tuning of the pre-trained BERT model. 

 We investigate the multiclass classification of comments, we use three classes hate speech, offensive 

speech and neither respectively. 

The rest of the paper is organized as follows: Section 2 describes the word embeddings. Section 3 presents 

proposed methodology. Section 4 describes the data and preprocessing. The results are discussed in section 5. 

2. Word embeddings 

The main idea of word embeddings is to project words in a continuous vector space. In this space, 

semantically or syntactically related words should be located in the same area. An important advantage of 

word embedding is that their training does not require a labeled corpus. 

The embeddings are generally learned from a very huge unlabeled corpus. This training is time consuming 

and often requires high-level technical conditions (big GPU, large memory, etc.). Pre-trained word 

embeddings are made available via Internet and can be used by researchers from around the world for 

different NLP tasks. For example, Facebook provided fastText model, Google provided several BERT models 

for different languages. In this paper, we propose to use these pre-trained embeddings. In the following of this 

section, we will describe the embeddings used in this study. 

fastText embedding: It is an extension of Mikolov’s embedding (Mikolov et al., 2013). The fastText 

approach is based on the skip-gram model, where each word is represented as a bag of character n-grams 

(Joulin et al., 2016; Bojanowski et al., 2017). A vector representation is associated to each character n-gram; 

words being represented as the sum of these representations. The word representations are learned by 

considering a window of left and right context words. Unlike Mikolov’s embeddings, fastText is able to 

provide an embedding for misspelled word, rare words or words that were not present in the training corpus, 

because fastText uses character n-gram word tokenization. 

BERT embedding: Currently BERT is one of the most powerful context and word representations (Devlin 

et al., 2019). BERT is based on the methodology of transformers and uses attention mechanism. Attention is a 

way to look at the relationship between the words of a given sentence (Vaswani et al., 2017). Thanks to that, 

BERT takes into account a very large left and right context of a given word. It is important to note that the 

same word can have different embeddings according to the context. For example, the word bank can have one 

embedding when it occurs in the context the bank account and a different embedding when it occurs in the 

context the bank of the river. Moreover, BERT model uses word-piece tokenization. For instance, the word 

singing can be represented as two word-pieces: sing and ##ing. Thus, it is possible to have embeddings for 

rare words, like in fastText. 

BERT model can be used in two ways: 

 for generating the embeddings of the words of a given sentence. These embeddings are further used as 

input for SVM and DNN classifiers. 

 for fine-tuning a pre-trained BERT model using a task-specific corpus to perform the classification. 

3. The proposed methodology 

We propose two approaches: feature-based and fine-tuning (see Figure 1). 

 In the feature-based approach, two steps are performed. First, each comment is represented as a sequence 

of words or word-pieces and for each word or word-piece, an embedding is computed using fastText or 

BERT. Secondly, this sequence of embeddings will form the input to the SVM or DNN classifiers which 

takes the final decision. We use CNN, Bi-LSTM and CRNN models as the DNN-based classifiers. 
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 in the fine-tuning approach, everything is done in a single step. Each comment is classified by a fine-tuned 

BERT model.        

We classify each comment as offensive, hate speech or neither. 

Fig. 1. Proposed methodologies 

3.1. Feature-based approaches 

For feature-based approaches, we used pre-trained fastText and BERT models to obtain the sequence of 

embeddings for a given comment. This sequence of embeddings is used as input features to the SVM and 

DNN classifiers. The sequence should have a fixed size. For this, we extend the short input comments by zero 

padding. 

fastText model: We use pre-trained fastText embedding model and apply this model to generate one 

embedding for each word of a given comment. Thanks to the bag of character n-grams model of fastText, 

every word in a given comment will have an embedding, even rare words. 

BERT model: Word-piece tokenization is performed on the comment and then used as input to a pre-

trained BERT model. BERT model provides contextual embedding for the word-pieces. 

The obtained embeddings from either fastText or BERT models are then used as input to the SVM and 

DNN classifiers. 

3.2. Classifiers 

For the purpose of multiclass classification, we use SVM and DNN-based classifiers (CNN, Bi-LSTM and 

CRNN): 

 Support Vector Machine (SVM) (Cortes et al., 1995) is a supervised training model. This model projects 

the input feature vector into non-linear higher dimensional space. Then a linear decision boundary that 

maximizes minimum separation between training instances is constructed. SVM has been one of the 

classification algorithms used in many NLP tasks (Salminen et al., 2020). 

 CNN were traditionally used in the domain of image processing, and are effective at capturing patterns. 

(Kim, 2014) demonstrated the efficient use of CNN for NLP on various benchmark tasks. 

 Bidirectional LSTM (Bi-LSTM) is a class of RNN models, which overcomes the problem of vanishing 

gradient problem. Bi-LSTMs are used for sequential data processing and are efficient at capturing long-

range dependencies. 
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 Convolutional Recurrent Neural Networks (CRNN) combines the advantages of CNN and RNN models 

(Zhang et al., 2018). The input sequence is processed by CNN layers, and the output of the CNN layers are 

passed through Gated Recurrent Unit (GRU) layers. 

3.3. BERT fine-tuning 

A BERT pre-trained model can be fine-tuned to a specific task. This consists in adapting of the pre-trained 

BERT model parameters to a specific task using a small corpus of task specific data. Since BERT is 

contextual model and pre-trained BERT model is trained on a very huge corpora containing few hate speech 

or twitter data, it will be interesting to fine-tune this model with a twitter dataset containing hate speech.  For 

the purpose of classification task, a neural network layer is added on top of the BERT model. So, the weights 

of this layer and the weights of the other layers of the BERT model are fine-tuned using the task specific 

dataset. 

4. Experimental setup 

4.1. Data set 

For the purpose of hate speech classification, we used a Twitter corpus (Davidson et al., 2017). The tweets 

are collected based on keywords from hatebase.org lexicon. The data set contains 24883 tweets and 

annotations performed by CrowdFlower. Each tweet is annotated by at least 3 annotators. The annotator 

agreement is 92%. The labels correspond to three classes: hate speech, offensive language and neither, 

representing 5.7%, 77.1% and 16.7% respectively. Thus, this data set is an unbalanced data set.  Table 3 gives 

the statistics of the data set after pre-processing. 

We followed the 5-fold cross validation procedure as in (Davidson et al., 2017). We used 70% of data as 

training, 20% as test set and 10% as development set. The development set is used to tune the hyper-

parameters. The test set is used to evaluate the performance of the proposed approaches. 

In our experiments, we use the three classes and the labels provided with the data set: hate speech, 

offensive speech and neither. 

4.2. Text pre-processing 

The way the input text is pre-processed plays an important role. For both, fastText and BER, we decided to 

remove the numbers and all the special characters except ‘!’, ‘?’, ‘,’, ‘.’ and apostrophe. 

  We also performed tweet specific pre-processing. We removed user names (words beginning with symbol 

‘@’).  and the word ‘RT’, indicating re-tweet. We split hast-tags in multiple words. For example, 

#KillThemAll is split into Kill Them All. 

Table 1. Statistics of Twitter data set after pre-processing. K denotes thousand. 

 Hate speech Offensive speech Neither Total 

Number of tweets 1430 19190 4163 24783 

Corpus size (word count) 19.6K 259.5K 62.1K 341.2K 

Number of unique words 3.7K 16.2K 9.9K 21.2K 

Average number of words per tweet 13.7 13.5 14.9 13.8 
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4.3. Embedding models 

 fastText embedding: the model is provided by Facebook
5
 and pre-trained on Wikipedia 2017, UMBC web-

base and statmt.org news datasets with total 16B tokens. The embedding dimension is 300, the size of the 

vocabulary is 1M. 

 BERT model: In our work, we used BERT-base-uncased word-piece model (for English), provided by 

Google
6
 and pre-trained on BookCorpus and Wikipedia corpora. The model has 12 stacked transformer 

encoder layers, with 24 attention heads. The embedding dimension is 768, the number of word-pieces is 

30K. 

4.4. Model configurations 

We perform the classification experiments with different hyper-parameters and choose the final 

configuration based on the best performance obtained on the development set. The best model configurations 

are detailed below. 

For SVM, we use linear SVM classifier with one-versus-rest classification, the squared-hinge loss and L2 

regularization. For Bi-LSTM, we used one or two bidirectional LSTM layers with varying LSTM units 

(between 50 and 128) followed by one or two dense layers with 64 and 256 dense units in the first dense layer 

and 16 and 64 dense units in the second layer. For CNN, we have used either one or two layers (filter size 

between 3 and 5), and used between 16 and 64 units, followed by two dense layers having 64 and 256 dense units 

in the first dense layer and 16 and 64 dense units in the second layer. For CRNN, we have used either one or 

two layers of CNN (filter size between 3 and 5), followed by one or two layers of GRU (between 50 and 100 units) 

followed by dense layers. The dense units use Rectified Linear Unit activation (ReLU), while the final output 

neuron uses sigmoid activation. We use a varying dropout up to 0.2. We use l2 regularization. The models are 

trained using Adam optimizer with learning rate of 0.001. For BERT fine-tuning we used maximum sequence 

length 256, batch size 16, learning rate 2·10
-5

 and 3 epochs. 

We evaluate the performance of our approaches in terms of macro-average F1-measure and weighted-

average F1-measure. F1-measure is a statistical measure to analyze classification performance. This value 

ranges between 0 and 1, where 1 indicates the best performance. F1-measure is calculated as follow: 

  

      

 

where, precision is the ratio between number of samples correctly predicted as class A and total number of 

samples predicted as class A by the classifier; recall is the ratio between number of samples correctly 

predicted as class A and total number of samples that should be predicted as class A. 

The Macro-average F1-measure computes the arithmetic mean of F1-measures of all classes: 

     

 

where C is the total number of classes. For each experiment, we compute an average macro-average F1-

                                                           
5https://fasttext.cc/docs/en/english-vectors.html 
6https://github.com/google-research/bert 



8 Geet D’Sa et al./ Information Processing at the Digital Age Journal. Volume 25, No 1(2020).1-12. 

 

measure obtained from the 5-folds test sets. 

The weighted-average F1-measure computes the weighted arithmetic mean of F1-measures of all classes, 

weighted by the support count of each class: 

 

where C is the total number of classes and w is the support count for each class. 

The weighted-average F1-measure gives more importance to majority class. Macro-average F1-measure 

does not use weights for the aggregation.  This results in a greater penalty when a model makes mistakes for 

the minority class. This measure is often used for an imbalanced dataset. As shown in the table 1, it is the case 

for our dataset. 

5. Results and discussion 

Table 2 gives the macro-average F1 and the weighted-average F1 results for the multiclass classification 

task using SVM, CNN, Bi-LSTM and CRNN classifiers with fastText and BERT embeddings as input 

features. 

From table 2, we observe that both fastText and BERT embeddings provide nearly the same results. Among 

the classifiers, DNN-based classifiers (CNN, Bi-LSTM and CRNN) perform better than SVM. CNN gives the 

same level of performance as CRNN, and Bi-LSTM performs slightly better than CNN and CRNN. 

Finally, BERT fine-tuning achieved the best performance. Compared to feature-based approaches, we 

obtained of absolute improvement of 11.6% in terms of macro-average F1-measure (84% versus 72.4%) and 

absolute improvement of 4.8% in terms of weighted F1-measure (94.4% versus 89.6%). In terms of relative 

improvement, it represents 16% for macro-average F1-measure and 5.3% for weighted F1-measure.  One 

reason may be that in the feature-based approach the embedding models have not been trained on hate speech 

or offensive data. On the contrary, the BERT fine-tuning approach is fine-tuned on twitter data to distinguish 

hate, offensive and neither and this allows to create an accurate model for the task. 

Comparing macro-average F1 and weighted-average F1 in table 2, we obtain at least 10% higher weighted-

average F1 than the macro-average F1 because the performance of the classification is better for the offensive 

speech class, which has the higher number of samples. 

Table 3 shows the confusion matrix for the classification using Bi-LSTM with fastText and BERT 

embeddings.  The confusion matrix obtained by BERT fine-tuning is presented in table 4. From table 3 and 

table 4, we can notice that the main confusions occur between hate speech and offensive speech where most of 

the samples labeled as hate speech are predicted as offensive speech. This suggest that the model is biased 

towards classifying tweets as less hateful than the human annotators. This may be due to the imbalance in 

class distribution within the dataset. The feature-based approach is able to correctly predict up to 31% of the 

hate speech tweets (table 3), while BERT fine-tuning achieved 53% (table 4).  

Table 2. Macro-average and weighted-average F1-measure for different classifiers and different embeddings. 

A. Feature-based approaches 

 SVM CNN Bi-LSTM CRNN 

 macro F1 weighted F1 macro F1 weighted F1 macro F1 weighted F1 macro F1 weighted F1 

fastText embedding 65.8 84.6 70.9 89.2 72.3 89.6 72.0 89.5 
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BERT embedding 62.01 83.0 71.9 88.9 72.4 89.6 70.9 88.9 

B. BERT fine-tuning 

 macro F1 weighted F1 

BERT fine-tuning  84.0 94.4 

Table 3. Confusion matrix for feature-based Bi-LSTM with fastText embeddings in %. The results for Bi-LSTM with BERT embedding 

are given in parentheses. 

T
ru

e
 

L
a
b

e
l 

hate 27 (31) 61 (60) 12 (9) 

offensive 2 (2) 95 (95) 3 (3) 

neither 1 (3) 8 (10) 91 (87) 

  hate offensive neither 

  Predicted Label 

Table 4. Confusion matrix for BERT fine-tuning  in % 

T
ru

e
 

L
a
b

e
l 

hate 53 43 4 

offensive 1 98 1 

neither 1 4 95 

  hate offensive neither 

  Predicted Label 

 

We analyzed some errors produced by the BERT fine-tuning classifier. We chose this model because it 

achieved the best results among the classification techniques. We see that the hate tweets containing hate 

words like pussy, bitch, cunt, etc. have often been misclassified as offensive speech. Below are examples of a 

few hate tweets misclassified as offensive speech: 

The fox says you're a cunt. 

Feminist aka a bitch 

She's a cunt. 

you are a pussy without your guns bitch as spic. 

Hate speech tweets with words like trash, teabagger and tweets with sarcasm have been misclassified as 

neither. The examples of a few hate tweets misclassified as neither are given below: 

Move out of our country teabaggers! 

California is home to skater trash 

trash eating trash 

The reason you called Jesus a monkey is because you knew he was not your color 

The tweets belonging to offensive speech have been misclassified as hate speech in the presence of words 

like faggots, nigger, queer. For example: 

Facebook is for fags 

fucking faggot 

Come over queer 

Alright , amateur grease monkey , show me how its done . Wait , that sounds racist 
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Moreover, offensive speech tweets without hate words and tweets with words like trash have been 

misclassified as neither. For example: 

Xbox live fags 

Truth is ate yellow snow as a child 

lol cracker 

Take that and shove it up your ass 

A very few tweets belonging to neither have been mistakenly classified as hate speech. Examples are: 

I see. So you feel betrayed, your racism comes out. 

Weekend is here. What an amazing week this has been. Let's use this extended weekend to celebrate our 

successes my fellow queer folk. 

He's a pretty damn good actor. But as a gay man it's awesome to see an openly queer actor given the lead role 

for a major superhero film. 

Besides, the tweets of neither class containing hateful words such as pussy, retard used in non-hateful 

content have been erroneously classified as offensive speech. Below are examples of some offensive speeches 

misclassified as neither: 

I'm such a retard sometimes. 

My flow retarded. 

I love how we can marry and still be the same queer, messy, funny, fabulous, dramatic community we've 

always been. Why I love us. 

momma said no pussy cats inside my doghouse. 

Through the above examples, we see that tweets can be misclassified as hate speech or offensive speech 

based on the dominant hate words present in the tweet. Some hate speech tweets can be misclassified as 

neither due to the absence of hate words or due to the presence of ordinary words which was used in hateful 

context (implicit hate speech). In future work we will perform a deeper analysis of these errors. 

6. Conclusion 

In this article, we investigated the multiclass classification of hate speech using embedding representation 

of words and DNNs. The classification was performed on a Twitter data set using a classification in three 

classes: hate, offensive and neither classes. We have proposed feature-based and fine-tuning approaches for 

the hate speech classification. 

In the feature-based approach, a sequence of word embeddings is used as input for the classifiers. As a 

word embedding, we investigated fastText embedding and the BERT embedding. Within the framework of 

feature-based approach, the performances of these two types of embeddings are almost identical. Among the 

classifiers, SVM, CNN, Bi-LSTM and CRNN were compared. DNN-based classifiers (CNN, Bi-LSTM and 

CRNN) performed better than the SVM classifier. Among the DNN-based classifiers, CNN and CRNN 

provided similar results. Bi-LSTM classifier performed slightly better than CNN and CRNN. 

The fine-tuning approach is a one-step approach, where the pre-trained BERT model is fine-tuned for our 

classification task of hate speech. Compared to the feature-based approaches, the BERT fine-tuning approach 

obtained a relative improvement of 16% in terms of macro-average F1-measure and 5.3% in terms of 

weighted F1-measure. 

The confusion matrices of these approaches show that BERT fine-tuning classified hate speech better than 

the feature-based approaches. The confusion between hate speech and offensive speech is widespread. Manual 

analysis of some misclassified examples revealed that most classification errors were due to the presence of 

specific words. A further study of this problem will be performed in the future. 
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