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ABSTRACT 

The computation of normal depth in open channels is a topical field in the practice of 

hydraulic engineers. Many methods consider Chezy’s resistance coefficient or Manning’s 

roughness coefficient as given data when calculating the normal depth. This seems 

unjustified since these coefficients depend in particular on the normal depth sought. The 

objective of this study is to propose an explicit method allowing the calculation of the 

normal depth in a rectangular channel with a horizontal bottom and circular walls using 

the rough model method (RMM), which is based on parameters that are easily measurable 

in practice. These parameters are the discharge, longitudinal bed slope, absolute 

roughness and kinematic viscosity. After establishing the equations governing the 

geometric and hydraulic characteristics of the referential rough model, the study shows 

that the normal depth sought is equal to the normal depth in the referential rough model 

corrected for the effects of a nondimensional correction factor. 

Keywords: Discharge, Normal depth, Rectangular Open Channel with Circular Sides, 

Slope, Turbulent flow, Uniform flow. 
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INTRODUCTION 

The channel shape profile can be of a compound form or a simple prismatic one where 

the cross-section is uniform throughout its length and the bottom slope is constant. 

Prismatic channels can be rectangular, triangular, trapezoidal, circular or even parabolic. 

For smaller discharges, triangular-shaped channels with circular bottoms are the most 

commonly used shape for line canals (Chow, 1959). For carrying water over long 

distances, the trapezoidal section is favored (Das, 2007). Rectangular sections are 

commonly used in urban areas as aqueducts (Swamee and Chahar, 2015). 

Many types of compound open channels have been proposed in the literature. Formal 

design of the parabolic channel has been introduced by Mironenko et al. (1984) 

considering that parabolic sides of the cross section improve slope stability compared to 

trapezoidal sections and that parabolic buckets can be used to excavate parabolic channels 

(Das, 2007) 

Easa and Vatankhah (2014) present a new general elliptic section, similar to the general 

power-law section that can produce several special sections. The special forms are a 

section with both circular sides and a horizontal bottom, a circular section, and a 

rectangular section. 

In this paper, one may propose a special case of an elliptical section with a horizontal 

bottom and circular sides. The proposed section could be advocated as a viable alternative 

to the trapezoidal section. 

The following advantages of this section have been recognized: 1) circular sides improve 

slope stability since the slope gradually increases from a horizontal slope at the channel 

bottom to a depth less than the channel height; 2) circular channels do not have sharp 

edges at which cracks may occur due to stress concentration; and 3) channels with circular 

sides and a horizontal bottom have been found to be more economical, providing a lower 

construction cost per unit length than trapezoidal channels. 

Other channel models have been developed to address special aspects, such as slope 

stability, hydraulic efficiency, and normal or critical flow conditions (Froehlich, 1994). 

Normal depth plays an important role in the classification of varied flow and in the design 

of channels and conduits (Achour, 2015b). According to the literature, Manning and 

Chézy resistance equations have been widely used for the calculation of normal depth 

(Raikar et al., 2010; Easa, 2011; Vatankhah, 2015), but the computation is often iterative, 

which requires a trial-and-error method. 

However, the problem is not in the iterative nature of the calculation but lies in the fact 

that Chezy and Manning coefficients are considered to be the data of the problem, 

whereas they depend on the normal depth sought (Achour, 2015a; Loukam et al., 2018; 

Beboukha et al., 2019; Achour and Amara, 2020). This implies that these coefficients can 

only be known if the normal depth is given. 
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If the normal depth is not given, it takes much experience to estimate these resistance 

coefficients. 

In practice, the absolute roughness characterizing the state of the internal walls of the 

channel is a measurable parameter. This characteristic is used as data for the problem, 

replacing the coefficients of Chezy and Manning (Achour, 2014c; Lakehal and Achour, 

2014). In this context, the present study is suggested based on the rough model method 

(RMM) (Achour, 2007). This method is based on a rough model having the same shape 

as the current channel. A strong relative roughness arbitrarily chosen is assigned to this 

rough model so that the flow regime is in the rough turbulent domain involving a constant 

friction factor. 

On one hand, this feature makes it possible to deduce the characteristics of this flow 

explicitly because the coefficient of friction is no longer an unknown variable. In a second 

step, these characteristics are multiplied by a coefficient that makes it possible to calculate 

the hydraulic characteristics sought, such as the normal depth. 

The resulting RMM relationships are applicable throughout the entire domain of turbulent 

flow, as depicted by Moody's diagram, corresponding to Reynolds number R ≥ 2300 and 

are valid for the following wide range of relative roughness /Dh values [0; 0.05], where 

: absolute roughness and Dh: hydraulic diameter (Achour, 2014a). 

Unlike traditional implicit methods, this study will highlight the explicit nature of the 

calculation of the normal depth in the considered channel given the minimum of known 

practical parameters. 

An example of calculation will be proposed to show the reader how to apply the method 

and, above all, to highlight both its ease of execution and its remarkable precision. 

BASIC EQUATIONS 

The universal formulas of Darcy-Weisbach (1854) and Colebrook-White (1939) and the 

Reynolds number equation constitute the basis of the theoretical development for the 

main proposed approach equations. The following Colebrook-White formula is used to 

determine the friction factor f as a function of both the Reynolds number R and the relative 

roughness /Dh: 

/1 2.51
2 log

3.7

h
D

f R f


= − +

 
 
   

(1) 

The Reynolds number R is expressed as: 

4Q
R

P
=   (2) 

Q: Discharge, P: Wetted perimeter and : Kinematic viscosity. 
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The Darcy-Weisbach relationship expresses the longitudinal channel bed slope S0 as 

follows: 

2

2

0
2gA

Q

D

f
S

h

=  (3) 

REFERENTIAL ROUGH MODEL 

For the rest of the study, the symbol " " is used to denote all the geometrical and 

hydraulic parameters of the flow in the rough model. Figure 1 shows the geometric and 

hydraulic characteristics of the studied channel as well as its rough model. The rough 

model shape is similar to that of the current channel and is characterized by an arbitrarily 

chosen relative roughness 𝜀 ̅ 𝐷ℎ̅̅̅̅ = 0.037⁄ , where 𝜀  ̅ and 𝐷ℎ̅̅̅̅  represent the absolute 

roughness and hydraulic diameter, respectively, in the rough model. The chosen value of 

the relative roughness is so great that the flow in the rough model is in the fully rough 

turbulent domain characterized by a Reynolds number 𝑅̅ → ∞. Therefore, applying Eq. 

(1) yields a friction factor 𝑓 ̅in the rough model such that 16/1=f  (Achour, 2007). 

Let us consider the following four equalities: 

1. bb = , where b  and b are the widths of the bottom of the rough model and that 

of the current channel, respectively (Fig. 1). 

2. DD = , where D  and D are the diameters of the lateral walls of the rough 

model and that of the current channel, respectively (Fig. 1).  

3. 
𝑆0̅ = 𝑆0, where 𝑆0̅ and 𝑆0 are the channel longitudinal bed slopes of the rough 

model and that of the current channel, respectively.
 

4. QQ =  as the equality between the discharge in the rough model and that in the 

current channel. 

Taking all these considerations into account, it makes sense to write that 𝑦𝑛̅̅ ̅ ≠ 𝑦𝑛 and 

even 𝑦𝑛̅̅ ̅ > 𝑦𝑛, where 𝑦𝑛̅̅ ̅ and yn  are the normal depths of the flow in the rough model and 

the corresponding one in the current channel. Therefore, the relative normal depth is 𝜂̅ =
𝑦𝑛̅̅ ̅/𝑏 ≠ 𝜂 = 𝑦𝑛/𝑏,

 
and the filling rates are 𝜉̅ = 𝑦𝑛̅̅ ̅ 𝐷̅⁄ ≠ 𝜉 = 𝑦𝑛 𝐷⁄ . 
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Figure 1: Schematic representation of the considered channels. a) Current channel; 

b) Referential rough model 

Thus, applying Eq. (3) to the rough model, one may write the following: 

2

2

0

2 Ag

Q

D

f
S

h

=   (4) 

where 𝐴̅ is the water area in the rough model. 

Taking into account that 𝐷ℎ̅̅̅̅ = 4𝐴̅/𝑃̅, where 𝑃̅ is the wetted perimeter in the rough model, 

and knowing that 𝑓̅ = 1/16, Eq. (4) becomes: 

2

30
128

1
Q

A

P

g
S =   (5) 

Considering the previous first equality, i.e., 𝑏̅ = 𝑏 , the water area of the rough model 

(Fig. 1b) is written as: 
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( ) ( ) 21cos 1 −= −
                                                                                                   (7) 

( ) ( ) ( )
( )
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21cos

1212
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1 −

−−
−=

−
                                                                                  (8) 

Db=                                                                                                                        (9) 

The parameter  can be considered the relative width channel. 

The wetted perimeter of the rough model is expressed as follows (Fig. 1b): 

( )
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bP                                                                                                           (10) 

By virtue of Eqs. (6) and (10), Eq. (5) can be written as: 
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Let us define the relative conductivity Q* as: 

5
0

*

bgS

Q
Q =                                                                                                                       (12) 

Therefore, Eq. (11) can be rewritten as: 

( ) 
( ) ( ) 

2*

3

5

42

Q


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+

+
                                                                                       (13) 

Since Q, i and b are given in practice, the relative conductivity can then be determined 

according to Eq. (12). What is needed is to deduce the filling rate 𝜉 ̅ using Eq. (13) 

provided the relative width   is given. However, Eq. (13) is implicit in 𝜉 ̅and thus requires 

a trial-and-error method or any iterative or graphical procedure. 

To avoid this constraint, one may propose an approximate relationship to replace Eq. (13). 

After testing different mathematical models, it was found that the polynomial type 

equation is the most suitable. This is written explicitly as follows: 

01
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  (14) 
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The Z parameter depends solely on the relative conductivity 
*Q  such that: 

*log QZ =                                                                           (15) 

On the other hand, an in-depth study of Eq. (14) showed that the coefficients a0 to a6 

depend exclusively on the relative width  

The values of the coefficients are grouped together in Table 1 as a function of the relative 

width . For greater precision,  values are given in terms of a fraction. 

Table 1: Values of the adjustment parameters of Eq. (14) 

 a6 a5 a4 a3 a2 a1 a0 

β
 

1 
109

2389
 −

89

13051
 

47

1351
 

202

2311
 

545

3286
 

328

1423
 

836

5199
 

1.2 
289

6616
 

137

4389
 

245

5501
 

673

6113
 

401

1907
 

1090

3821
 

304

1545
 

1.4 
155

3713
 

96

1603
 

193

2692
 

543

3929
 

985

3844
 

364

1065
 

361

1547
 

1.6 
124

3109
 

307

3752
 

437

4110
 

327

1874
 

904

2961
 

549

1373
 

815

3013
 

1.8 
84

2203
 

181

1832
 

659

4595
 

386

1771
 

533

1487
 

307

668
 

269

873
 

2 
293

8029
 

355

3168
 

935

5183
 

187

701
 

435

1046
 

358

687
 

974

2813
 

2.5 
120

3647
 

2553

19024
 

437

1646
 

964

387  1631

2832
 

2983

4367
 

173

390
 

3 
179

5977
 

505

3444
 

756

2245
 

1009

1866
 

818

1087
 

89

104
 

845

1554
 

3.5 
199

7236
 

472

3073
 

369

934
 

577

854
 

979

1044
 

2162

2085
 

1154

1785
 

4 
102

4007
 

281

1786
 

654

1477
 

7621

9495
 

778

691
 

2070

1691
 

2337

3110
 

4.5 
533

22465
 

807

5072
 

552

1145
 

1358

1475
 

1563

1190
 

1261

891
 

115

134
 

5 
155

6967
 

224

1403
 

2471

4800
 

861

836
 

418

279
 

7630

4743
 

633

655
 

 

Eq. (14) is applicable in the range of relative conductivity indicated in Table 2 and for the 

values of the filling rate 𝜉 ̅varying in the following wide range 0.1 ≤ 𝜉̅ ≤ 0.5. Note that 

the extreme values of 𝜉 ̅correspond to the practical minimum and maximum values. 
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Table 2: Limits of applicability of Eq. (14) 

 1 1.2 1.4 

Q* 0.4666 ≤ Q* ≤ 5.9515 0.3409 ≤ Q* ≤ 4.2616 0.2625 ≤ Q* ≤ 3.2330 

 1.6 1.8 2 

Q* 0.2100 ≤ Q* ≤ 2.5557 0.1728 ≤ Q* ≤ 2.08355 0.1454 ≤ Q* ≤ 1.7395 

 2.5 3 3.5 

Q* 0.1013 ≤ Q* ≤ 1.1947 0.07567≤ Q* ≤ 0.8840 0.05927 ≤ Q* ≤ 0.6876 

 4 4.5 5 

Q* 0.04803 ≤ Q* ≤ 0.5544 0.03994 ≤ Q* ≤ 0.4592 0.03389≤ Q* ≤0.3884 

 

Fig. 2 graphically represents the variation in the relative deviation 𝛥𝜉/̅𝜉̅ between the exact 

Eq. (13) and the approximate Eq. (14) for different values of 𝜉 ̅(0.1 to 0.5) and  ( to ). 

 

Figure 2: Relative deviation  /  for different values of   (Q* listed in Table 2) 

Fig. 2 clearly shows that the maximum relative deviation 𝛥𝜉/̅𝜉̅ is less than 0.013%. This 

confirms the reliability of the approximate relation (14). Once the filling rate is 

determined, the relative depth in 𝜂̅ the rough model can be worked out by simply writing: 

 =     (16) 

-0.01
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NON-DIMENSIONAL CORRECTION FACTOR OF LINEAR DIMENSION 

The rough model method suggests that any linear dimension L of a channel is related to 

its homolog 𝐿̅ in the rough model by the following relationship (Achour, 2014b): 

LL =                                                       (17) 

The linear dimension L can correspond to the width of a rectangular channel or to the 

diameter of a circular pipe. 

It is worth noting that Eq. (17) is applicable to the whole turbulent flow regime, as 

depicted in Moody's diagram. 

With regard to Eq. (17), it makes sense to define  as the dimensionless correction factor 

for the linear dimension. As the linear dimension 𝐿̅ of the rough model is always greater 

than the linear dimension L of the current channel, one may then write 0 <     

An in-depth study of both the Darcy-Weisbach and Colebrook-White relationships made 

it possible to deduce that the dimensionless coefficient  could be expressed by the 

following improved explicit equation (Achour and Bedjaoui, 2006): 

5/2
5.8

75.4

/
log35.1

−




























+−=

R

Dh
                                                                      (18) 

where R is the Reynolds number characterizing the flow in the rough model expressed 

as: 

P

Q
R

4
=                                                                                                                         (19) 

where  is the kinematic viscosity. 

COMPUTATION STEPS OF NORMAL DEPTH 

To calculate normal depth yn in a rectangular open-channel with circular sides, an 

organization chart (Fig. 3) has been constructed where the input data are the following 

known parameters: the discharge Q, the bottom width b, the diameter D of the circular 

lateral side, the longitudinal bed slope S0, the absolute roughness  and the kinematic 

viscosity  Note that all these parameters are measurable in practice. 
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Figure 3: Flow chart for normal depth calculation 

PRACTICAL EXAMPLE 

To clarify the procedure for using the flow chart, a numerical example is proposed below. 

Knowing that: 

Q = 15.197 m3/s, b = 10 m, D = 5 m, S0 = 10-4,  = 10-3 m,  = 10-6 m2/s, calculate the 

normal depth yn. 

1. The relative conductivity Q* is given by Eq. (12) as follows: 

1.53434619

101081.9

197.15

545
0

* =



==
−bgS

Q
Q

 

2. Using Eq. (15), the Z parameter is then: 

0.185923364619)log(1.5343log * === QZ
 

3. The relative bottom width is as follows: 

Data : Q, S0, b, D, , 

Q* (Eq. 12)

Z (Eq. 15)

(Eq. 10)

(Tab. 1 and Eq. 14)

(Eq. 16)

(Eq. 8)(Eq. 7)

(Eq. 6)

(Eq. 19)

(Tab. 1 and Eq. 14)

( ) ( )
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R PADh 4=



bb =
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

byn =
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4.  = b/D = 10/5 = 2. 

5. Considering Eq. (14) along with Table 1 yields   as follows: 

0.45946738

2813

974
0.18592336
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0.18592336

1046
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0.18592336
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01
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4
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5
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6

=

++++

++=

++++++= aZaZaZaZaZaZa

 

6. The parameters ( )  and ( )  are given by Eqs. (7) and (8), respectively, as 

( ) ( ) ( ) 1.489642040.4594673821cos21cos 11 =−=−= −− 
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7. According to Eq. (6), the water area of the rough model A is such that: 
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Therefore, using Eq. (10), the wetted perimeter P  of the rough model is: 

( )
mbP 4482102.171

2

48964204.1
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+=
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Knowing A  and P , the hydraulic diameter hD  is as follows: 

mPADh 7.2852495817.448210231.778641544 ===  

Finally, the Reynolds number R  is determined from Eq. (19) such that: 
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93483910.34
1017.4482102

15,19744

6-
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


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P

Q
R

 

8. According to Eq. (18), the dimensionless correction factor  of the linear 

dimension is explicitly computed as follows: 
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9. Let us give the rough model the following linear dimension, in agreement with 

the fundamental Eq. (17): 

mbb 13.52393750.7394296210 ===   

Note that when assigning to the rough model the new linear dimension b/ψ, the filling 

rate in the current channel is equal to that in the rough mode, i.e.,  = . 

Then, the corresponding value of the relative conductivity Q* is, according to Eq. (12): 

0.72138228

13.52393751081.9

197.15

545
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==
−

bgi

Q
Q

 

10. According to Eq. (15), the new value of the Z parameter is: 

0.141834538228)log(0.7213log * −=== QZ
 

11. Using the same values for the coefficients a0 to a6 considered in step 5, Eq. (14) 

allows computing the filling rate in the current channel as: 
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According to Eq. (16), one may deduce the value of the nondimensional normal depth in 

the current channel as follows: 

0.1400052420.28001049 === 
 

12. Finally, the normal depth sought is then: 

mmbyn 4.11.400052430.1400052410 === 
 

13. The purpose of this step is to validate the previous calculation. For this, let us 

calculate the longitudinal slope of the channel using the Darcy-Weisbach 

relationship expressed by Eq. (3). If the calculations previously carried out are 

correct, the slope that will be thus calculated should be equal to the slope given 

in the problem statement. 

The rough model method demonstrates that the friction factor f and the 

nondimensional correction factor  are related by the following relationship 

(Achour, 2007): 

16/5=f
 

Thus: 

0.0138154216/0.73942962 5 ==f
 

According to Eqs. (7) and (8), the parameters ( )  and ( )  are, respectively, as 

follows: 

( ) ( ) ( ) 1.115221010.2800104921cos21cos 11 =−=−= −− 
 

( )
( ) ( )

( )

( ) ( )

( )
0.64571623

0.2800104921cos

0.2800104910.280010490.28001049212
1

21cos

1212
1

1

1

=
−

−−
−=

−

−−
−=

−

− 




 

The wetted perimeter P in the current channel is given by Eq. (10) as follows: 

( )
mbP 576105.151

2

11522101.1
101 =








+=








+=





 
Using Eq. (6), the water area A is obtained as: 
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( ) ( )

2

2

2

2

2

5012512.18

2

28001049.0

24

64571623.011522101.1
10

4

m

bA

=









+




=














+=









 

From the known values of both A and P, the hydraulic diameter Dh is then: 

mPADh 4.751188115.57610518.501251244 ===
 

Finally, applying Eq. (3) yields the following: 

4-

2

2

2

2

0 1050.00009999
18.50125129.812

15.197

4.7511881

0.01381542

2
=


==

gA

Q

D

f
S

h
 

It is thus clearly demonstrated that the calculated longitudinal slope of the channel is equal 

to the slope given in the problem statement, which allows us to conclude that the 

recommended method is reliable. 

CONCLUSIONS 

Explicit hydraulic relationships have been proposed to calculate the normal depth in 

rectangular open channels with circular sides by applying the rough model method. Both 

the current channel and its homologous rough reference model have the same shape. The 

geometric and hydraulic characteristics of the rough model are known thanks to explicit 

equations such as the Darcy-Weisbach relationship. 

The recommended method takes into account three rational basic relationships of 

hydraulics, namely, the Colebrook-White equation, Darcy-Weisbach relationship and 

Reynolds number expression. 

From the known linear dimension of the model, it was possible to deduce the linear 

dimension b of the current channel by using a dimensionless coefficient, denoted 

 known as the correction factor of the linear dimension. This is closely related to the 

characteristics of the rough model, and its computation is explicit [Eq. (18)]. 

Knowing the parameters b and , a change of dimension was made on the rough model 

by assigning to it the new dimension b/. This judicious manipulation led to equal filling 

rates in the model and in the current channel, i.e.
 

 =  explicitly calculated using Eq. 

(14). 

The relative normal depth was thus easily deduced by applying Eq. (16), which directly 

allowed the calculation of the normal depth sought. 

It is important to note that the RMM is based on measurable parameters in practice, such 

as absolute roughness or kinematic viscosity. In addition, this method does not take into 
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account flow resistance coefficients such as those of Chézy or Manning because these 

coefficients depend on the normal depth sought. It is therefore impossible to assess them 

before calculating the normal depth of the flow. 

A practical example was suggested to highlight the simplicity, efficacy and validity of the 

advocated method. 
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