Ann. Inst. Nat. Agron. El-Harrach, 1990, Vol. 14, № 1 - 2, pp. 93 - 113

UTILITE DES TABLES ET TARIFS DE CUBAGE DANS L'ANALYSE DES REBOISEMENTS ET ETUDES DENDROMETRIQUES (CAS DU PIN PIGNON DANS LA REGION DE MOSTAGANEM).

par N. LETREUCH-BELAROUCI - I.N.A.

et

Z.E. LOULOU

مــلـخــص

ان للتشجير اهمية اقتصادية بالغة مهما كانت المساحة المعنية حيث يجب الاعتناء به و اخذه بعين الاعتبار خاصة و انه يعتبر مصدر اساسي لانتاج الخشب،

و في هذا الاطار نظمت بحدوث و دراسات على مستوى معهد البغابات و حماية البطبيعة بالمعد الوطني للحية .

هـذا و لـتـقييم الانتاج و تحسين نـوعيته يـجـب الاحاطــة الكلية و الدراسـة المستفيضة لنبات

و لقد كانت حملات التشجير لولاية مستغانم الهدف من اجراء دراسات تحليلية تعتمد على مقياس ابعاد الشجر باحصاء الكشافة لكل قدم و تعتمد هذه التحاليل على عينات نظامية منهجية بدلالة المساحة .

و تستغل جداول تكعيب الخشب من قبل اختصاصيبين غابيين في الحسابات الحجمية الغابية .

RESUME

Les reboisements, quelle que soit l'espèce considérée doivent en principe avoir une finalité économique.

Le plus souvent, s'il s'agit d'une production de bois, il est primordial de la chiffrer.

C'est dans ce cadre là qu'une recherche a été effectuée au sein du département de foresterie et de protection de la nature de l'Institut National Agronomique.

Chiffrer la production a nécessité d'abord une bonne connaissance de Pinus pinea.

Les reboisements dans la wilaya de Mostaganem ont fait l'objet d'une analyse dendrométrique sur la base de l'inventaire d'un peuplement pied par pied et l'inventaire par échantillonnage systématique par placettes. L'élaboration de tables et tarifs de cubage s'avère très utile dans le calcul des volumes. Celles-ci peuvent être utilisées largement par les forestiers de terrain.

Mots clés

Pinus pinea - monographie - climat - Mostaganem - reboisement - inventaire - tarifs de cubage - accroissements.

1. INTRODUCTION

Nombreux sont les forestiers et les auteurs qui ont donné les définitions de l'aménagement des forets.

Les notions générales s'articulent autour de termes comme :

- objectif
- régime
- traitement
- nature des exploitations
- coupes
- règlement d'exploitation.

Actuellement admise, la conception moderne de la notion d'aménagement valable pour toute forêt et quel que soit son objectif peut se résumer en trois points :

- décider ce que l'on veut en faire,
- compte tenu de ce qu'on peut y faire,
- et en déduire ce que l'on doit y faire,
- (P. GATHY et Al, 1974).

Il s'agit des forêts méditerranéennes à usages multiples :

- production de bois
- tourisme
- forêt de loisirs
- aménagement cynégétique
- forêt de protection etc...,

Il est bien évident qu'il faut alors bien définir le rôle de la forêt mais connaître parfaitement ses conditions de croissance, de milieu, des possibilités de mise en valeur, les moyens matériels, humains et financiers dont on dispose.

Une des données de base consiste à déterminer la possibilité..

Le calcul de l'estimation de la production demeure essentiel et dans la mesure où nous voulons dans nos forêts pratiquerune sylviculture intensive, les inventaires le plus souvent basés sur la théorie de l'échantillonnage seront la base de la connaissance de l'essence forestière.

Ces estimations vont révéler l'état actuel de la forêt ou du reboisement.

- volume sur pied
- possibilité annuelle
- production annuelle moyenne

Pour ce faire nous avons pris l'exemple de la confection de tables et tarifs de cubage, étape nécessaire à l'estimation de la production forestière.

L'exemple est relatif au pin pignon (Pinus pinea L.) dans la région de Mostaganem.

2. CARACTERISTIQUES GENERALES SUCCINTES

Le pin pignon est une essence mal connue dont il semble bien, qu'aucune destinée économique bien précise lui a été conférée.

La littérature forestière enseigne surtout qu'il s'agit d'un arbre ornemental, utilisé notamment pour les boisements de dunes côtières.

Souvent l'espèce a été supplantée par les Acacias et parfois à tort par les Eucalyptus en raison de la croissance réputée rapide.

Une meilleure connaissance du pin pignon dans les reboisements littoraux et sublittoraux (MONTS DE L'AGROUB) nous a permis de mieux cerner ses possibilités d'extension, de culture et de production dans un tripe but.

- production de bois
- production de fruits
- création de forêts-parcs à faible densité dans une perspective d'élevage (introduction du pin pignon dans les pâturages boisés).

La production de fruits "pignes" rappelant le goût des noisettes est à envisager sérieusement. L'Espagne, le Portugal et l'Italie sont à cet égard de gros producteurs. Le rendement serait de l'ordre de 200 kg/ha/an de graines décortiquées.

Cet arbre du littoral peut croître jusqu'a 800 m d'altitude.

Du point de vue qualités anatomiques et technologiques ce pin ressemble beaucoup au pin maritime.

Son bois est dense, assez dur (0,52 . 0,77). Son utilisation est multiple:

- traverses de chemin de fer (Portugal)
- charpente
- menuiserie
- construction navale (Turquie, Portugal)
- emballage

Comme autresutilisations, nous pouvons citer brièvement sa valeur décorative, son aspect esthétique à tous les âges, son intérêt dans les boisements et son utilité dans un but agro-sylvo-pastoral où il est élevé en vergers d'arbres fruitiers taillés à cîme très large.

3. ZONE D'INVESTIGATIONS - LES INVENTAIRES

Les principales essences forestières qui caractérisent du point de vue forestier la wilaya de Mostaganem sont les suivantes :

- Pinus halepensis
 - Eucalyptus sp.
 - Juniperus phoenicea
 - Tetraclinus articulata
 - Pinus pinea L.
 - Acacia sp.

3.1. Etat des boisements

Le plus souvent il s'agit de boisements monospécifiques excepté dans les stations de Khadra et Bouachria.

Le mode de reboisement : semis et repiquage.

3.2. Les inventaires

3.2.1. Présentation générale du protocole

Etant donnée la diversité des types de boisements, des âges et des superficies deux méthodes d'inventaire ont été utilisées.

- inventaire par placette d'échantillonnage systématique.
- inventaire complet pied par pied (forêt de l'AGBOUB-DARKAOUA).

Les inventaires ont porté sur :

- partie littorale 72,5 ha 44 placettes
- partie sublittorale 72 ha 44 placettes

Inventaire pied par pied 2 hectares.

Les placettes sont de forme circulaire et ont une superficie de 4 ares. L'âge des peuplements est déterminé sur place à 30 cm du sol, sur le secteur d'abattage en ajoutant le temps nécessaire à l'arbre pour atteindre les 30 cm.

Stations	<u>Age</u>		
Bouachria	70 ans		
Bourahma	41 ans		
Chouachi	17 ans		
Faid Chabane	17 ans)	
Sidi Abdellah	17 ans	(AGBOUB
Derkaoua	70 ans)	

3.2.2. <u>Matériel</u> et <u>méthode</u>

- Blumeleiss, mire de pardé, boussole, altimètre, tronçonneuse.
- Méthode : échantillonnage systématique.

Inventaire complet pied par pied

'- Mesures effectuées à l'intérieur des placettes et calcul des paramètres.

C₁₃₀ H_{TOT} âge

 ${
m H}_{
m DOM}$, N/ha , Volume sur pied, production, tige de surface terrière moyenne.

- Relevé des caractéristiques stationnelles

exposition pente altitude végétation sols

4. LES TARIFS DE CUBAGE

4.1. Arbres abattus

Le choix des tiges a été effectué de façon à pouvoir constituer un échantillon représentatif de la population observée. Au total 104 arbres ont servi à l'élaboration de tarifs de cubage.

54	Chouachi	17	ans	(plants	issus	de	repiquage)
30	Bourahma	41	ans	(plants	issus	de	repiquage)
20	Bouachria	70	ans	(semis)	•		

Trois tarifs ont été établis. Le quatrième intitulé "Tarif de cubage Mostaganem" est le résultat des trois précédents (combinaison des 63 arbres).

- " Tarif Bourahma "
- " Tarif Bouachria"
- " Tarif Chouachi"

4.2. Les formules de cubage

Plusieurs équations de cubage ont été testées :

- équations de cubage à 1 entrée

$$V = A_0 + A_1 C^2$$
 (1)

$$V = A_0 + A_1 + A_2 C^2$$
 (2)

$$LN(V) = A_0 + A_1 LN(C)$$
 (3)

- équations de cubage à 2 entrées '

$$V = A_0 + A_2 C^2 H$$
 (1)

$$V = A_0 + A_1 C^2 + A_2 C^2 H + A_3 H$$
 (2)

$$V = A_O + A_1 C_2 H$$
 (3)

$$LN(V) = A_0 + A_1 LN (C) + A_2 LN (H)$$
 (4)

Le choix du modèle de régression le plus approprié s'est effectué par comparaison des coefficients de détermination des différents modèles et de l'écart de type résiduel.

Equations retenues

Chouachi
$$Log V = -5.39 + 2.42 Log C.$$
 (1 entrée) $Log V = -3.79 + A_1 Log C + A_2 Log H$ (2 entrées) Bouachria $Log V = 2.16 - 4.09 Log C$ (1 entrée) $Log V = -2.54 + A_1 Log C + A_2 Log H$ (2 entrées) Bourahma $V = 27.15 + A_1 C_2 + A_2 C^2$ $V = 6.69 + A_1 C^2 + A_2 C^2H + A_3H$

Log V = -5,31 + 2,43 Log C

Conclusion

Mostaganem

Les tarifs et tables de cubage ont servi à estimer directement les volumes des placettes inventoriées (voir tableau synthétique) les tables et tarifs de cubage sont d'une grande utilité localement, bien sûr en précisant notamment les limites de validité.

 $Log V = -4.95 + A_1 Log C + A_2 Log H$

Elle nous ont permis d'estimer la production rapidement et de mieux préciser l'état de ces reboisements, dans l'interprétation des caractéristiques dendrométriques.

Pour l'exemple du pin pignon, il ressort nettement l'absence de travaux et éclaircies en temps voulu.

Les densités faibles mais surtout hétérogènes ne font pas du tout apparaître un suivi de la courbe de décroissance nombre de tiges/âge.

Il semble bien que ces reboisements, même les plus âgés, n'ont pas du tout été exécutés dans des perspectives économiques claires de production ou autres utilisations excepté la fixation des dunes.

La production est plutôt faible de l'ordre de 1,8 m³/ha/an dans les meilleurs cas.

Bien que nous soyons dans des conditions de croissance difficiles, une production, comme cela est le cas de la station de Sidi Abdellah (AGBOUB), de $0.6~\text{m}^3/\text{ha/an}$ est tout à fait dérisoire et dénué de tout sens.

Dans bien des cas, les plants étaient introduits sans ôter les sachets de polyéthylène.

Les déformations racinaires qui s'en suivent ont eu pour conséquence directe l'étranglement classique que l'on connaît au niveau du collet. Cette crosse racinaire dans le meilleur des cas ralentit la croissance de façon très sensible affectant directement la production.

Il est anormal d'avoir des densités aussi faibles, de l'ordre de 212 pieds/ha, à l'âge de 23 ans. Ces reboisements peuvent être alors considérés comme des forêts parc à faible densité mais aussi, présentant une grande hétérogénéité.

Ceci s'explique en grande partie par l'absence des regarnissages après plantation. Dans ces conditions, il paraît impossible de parler de production intensive de bois sans y apporter tous les soins afférents à l'éducation des peuplements, depuis la plantation jusqu'aux éclaircies.

Nous pouvons également citer le cas de Bouarchia, reboisement dont la production est de l'ordre de 1,8 m³/ha/an ce qui paraît logique à une densité de 300 pieds/ha. Par contre, à Chouachi à une densité de 605 pieds/ha la production à 19 ans n'est que de 0,8 m³/ha/an.

Il ne s'agit donc pas pour nous de reboisements pleins à but de production de bois où l'on peut espérer une production supérieure, à condition d'appliquer les règles de culture tout en sachant que nous sommes dans une zône de faible pluviosité.

L'indice de Paterson, calculé pour notre région donne une production de 3 $m^3/ha/an$.

$\frac{\text{TABLEAU}}{\text{DES PARAMETRES DENDROMETRIQUES}} \frac{\text{RECAPITULATIF DONNANT LES RESULTATS}}{\text{DENDROMETRIQUES}}$

STATIONS	ပ္သ	DOLIDATIMA		OTTOLIA OTT	DADWAOUA	GIDI
	TES	BOURAHMA	BOUACHRIA	CHOUACHI	DARKAOUA	SIDI ABDELLAH
PARAMETRES DENDROMETRIQUES	N					
DENDINONETITIONS	D					
Age	An	41	. 57	19	67	23
Superficie	ha.	37,50	25	10	2	70
Superficie in- ventoriée	ha	0,92	0,64	0,20	2,00	1 , 76
Nb.de tiges inventoriées	pieds	77	190	121	189	3,73
Nb.de tiges total(estimé) Densité à hec-	pieds	19.425	7.422	6.050	189	14.835
tare(estimée)	P/U/ha	518	297	605	94	212
Nb.de placet-						
tes(invento- riées)	_	23	16	5		44
Surface ter- rière totale (GTOT)	m ²	555,75	596,50	57,50	31,34	319,9
Surface ter- rière G/ha	m ²	14,83	23,85	5 , 55	15,65	4,57
Surface ter- rière My.G.	cm ²	317,98	803,62	106,25	1.650,00	210,65
Tige de cir- conf. Moy. C	cm	63,20	100,49	33,80	144,00	51,43
Tige de surface terrière (Cg)						
Moy.	cm	65,09	109,03	36,63	147,09	49,47
H. moy.	m	7,88	10,94	3,71	9,57	3,95
H. dom	m	9,60	12,70	4,4	14,36	4,39
Volume inven- torié	dm ³	49 .7 74	67.877	2.924	166.252	22.202
Volume à ha V/ha	dm ³	5.4102,17	106.057,81	14.620	83.126	
Volume total (VIOI)	dm ³	2.028.831,4	265845,2	146.200	16.252	883.034,04
Production an- nuelle moy.PAM	m ³ /ha an	1.319	1.861	0,769	1,30	0,549

(Les volumes sont obtenus à partir des tarifs cubages à 1 entrée)

. TARIF A UNE ENTREE.

* EQUATION NO 1: U=AO+A1 C**2

NOMBRE D'ARBRES = 19
REGRESSION LINEAIRE DE Y EN FONCTION DE X:

MOYENNE DE Y = 363.5827

MOYENNE DE X = 10078.37

PENTE DE LA DROITE A1 = 3.593267E-02

ORDONNEE A L'ORIGINE A0 = 1.440094

COEFFICIENT DE CCCPELATION (R) = .8351506

COEFFICIENT DE DEJERMINATION (R2) = .6974765

SCE DES Y = 674460.5

SCE RESIDUELLE = 204040.1

ECART-TYPE RESIDUEL = 109.5553

COEF, DE VARIATION RESIDUELLE (%) = 30.13215

* EQUATION NO 2: V=0+A1C+ A2 C**2 ----- OU Y=V ,X1=C ET X2=C**2

NOMBRE D'ARBRES ≈ 19 REGRESSION LINEAIRE MULTIPLE DE Y EN FONCTION DE P VARIABLES EXPLICATIVES

NOMBRE DE UNRIABLES EXPLICATIVES = 2
COEF.TERME INDEPENDANT NO = -1363.871
COEF.DE REGRESSION DE LA UNR EXPLICATIVE NO X 1 = 26.05615
COEF.DE RECRESSION DE LA UNR EXPLICATIVE NO X 2 = -8.291512E-02
SCE TOTALE DE Y = 674460.5
SCE RESIDUELLE = 164378.3
COEF. DE CORRELATION = .8696446
COEF.DE DETERMINATION = .7562819
ECART-TYPE RESIDUEL = 101.359
COEF.DE UNRIATION RESIDUELLE = 27.87783

* EQUATION NO 3: LN(U)=AO+A1 LN(C)
----- OU Y =LN(U) ET X=LN(C)

NOMBRE D'ARBRES = 19
REGRESSION LINEAIRE DE Y EN FONCTION DE X:

MOYENNE DE Y = 5.784281

MOYENNE DE X = 4.569848

PENTE DE LA BROITE A1 = 2.162363

ORBONNEE A L'ORIGINE A0 = -4.097391

COEFFICIENT DE CORRELATION (R) = .9017276

COEFFICIENT DE DETERMINATION (R2) = .8131127

SCE DES Y = 3.941895

SCE RESIDUELLE = .7366901

ECART-TYPE RESIDUEL = .2081699

COEF. DE VARIATION RESIDUELLE (%) = 3.598891

. TARIF A DEUX ENTREES

** EQUATION NO 1: U=A0+A1*C**2+A2*C**2*H

NOMBRE D'ARBRES = 19 RECRESSION LINEAIRE MULTIPLE DE Y EN FONCTION DE P VARIABLES EXPLICATIVES

MOMBRE DE VARIABLES EXPLICATIVES = 2
COEF.TERME INDEPENDANT AO = 185.608
COEF.DE REGRESSION DE LA VAR.EXPLICATIVE NO X 1 = -4.007094E-02
COEF.DE REGRESSION DE LA VAR.EXPLICATIVE NO X 2 = 5.70664E-03
SCE TOTALE DE V = 674460.5
SCE RESIDUELLE = 84320.27
COEF. DE CORRELATION = .9354043
COEF.DE DETERMINATION = .8749812
ECART-TYPE RESIDUEL: = 72.59488
COEF.DE VARIATION RESIDUELLE = 19.96654

NOMBRE D'ARBRES = 19 REGRESSION LINEAIRE MULTIPLE DE Y EN FONCTION DE P VARIABLES EXPLICATIVES

NOMBRE DE VARIABLES EXPLICATIVES = 3
COEF.TERME INDEPENDANT AO = -494.4914
COEF.DE RECLESSION DE LA VAR.EXPLICATIVE NO X 1 = -5.923845E-04
COEF.DE RECRESSION DE LA VAR.EXPLICATIVE NO X 2 = 1.174743E-03
COEF.DE RECRESSION DE LA VAR.EXPLICATIVE NO X 3 = 77.49866
SCE TOTALE DE Y = 674460.5
SCE RESIDUFLLE = 60789.75
COEF. DE CORRELATION = .9538706
COEF.DE DETERMINATION = .9098691
ECART-TYPE RESIDUEL = 63.66043
COEF.DE VARIATION RESIDUELLE = 17.5092

*EQUATION NO 3: U=RO+A1*C2H

NOMBRE D'ARBRES = 19 REGRESSION LINEAIRE DE Y EN FONCTION DE X:

MOYENNE DE Y = 363,5827

MOYENNE DE X = 101955.7

PENTE DE LA DROITE A1 = 2.859895E-03

ORDONNEE A L'ORIGINE A0 = 72,00013

COEFFICIENT DE CORRELATION (R) = .9101078

COEFFICIENT DE DETERMINATION (R2) = .8282962

SCE DES Y = 674460.5

SCE RESIDUELLE = 115807.4

ECART-TYPE RESIDUEL = 82.53606

COEF. DE VARIATION RESIDUELLE (R) = 22.70077

* EQUATION NO 4:LN(V)=AO+A1 LN(C)+A2 LN(H)
============= OU Y=LN(U) , X1=LN(C) ET X2=LN(H)

HOMBRE D'ARBRES = 19 REGRESSION LINEAIRE MULTIPLE DE Y EN FONCTION DE P VARIABLES EXPLICATIVES

.

HOMBRE DE VARIABLES EXPLICATIVES = 2
COEF.TERME INDEPENDANT AO = -2.540785
COEF.DE RECRESSION DE LA VAR.EXPLICATIVE NO X 1 = ..7957435
COEF.DE RECRESSION DE LA VAR.EXPLICATIVE NO X 2 = "2.083198
SCE TOTALE DE Y = 3.941895
SCE RESIDUELLE = .185547
COEF.DE CORRELATION = .9761811
COEF.DE DETERNINATION = ..9529295
ECART-TYPE RESIDUEL = .1076879
COEF.DE VARIATION RESIDUELLE = 1.861734

Tarif de cubage à 1 entrée Pinus Pinéa L -- Bouachria

- EN X VERTICALEMENT = Circ. à 1830

** [\	****	a. I	occur.	I
į	X`\	į		į
<u>ille during dur</u>	60 65 70 75	IIIIIIIIII	116 138 162 188 217	1116 HILLIGHT THE THE THE THE THE THE THE THE THE T
IIIIIII	85 90 95 100 105	I	247 279 314 351 390	ILLI
ITTITI	110 115 120 125 130	IHILIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	431 475 521 569 619	ITITITI
ÎJIII	135 140 145 150 155	Î	672 726 784 843 905	I
ITITITI	160 165 170 175 180	ITITI	970 1034 1104 1177 1251	ITITITI
IIIIII	185 190 195 200 205	HUMUNGHUMUNGHUMUNG THE TOTAL THE TOT	1327 1406 1487 1571 1657	I
I	210 215 220	IIII	1746 1837 1931	I I I I

· Table de cubage à deux entrées

Pinus Pinéa L --- Bouachria

⁻ EN X VERTICALEMENT = Circonf. à 1m30 - EN Y HORIZONTALEMENT = Hauteur totale en m

******	******	*****	****	*****	******	*****	******	******	*****	****	*****	*****	***
I\ Y I I \ \ I	6	7	8	9	10 /	11	12	13	14	15	16	17	18 Î
****	,	****	*****	******	*****	*****		*****	******				,
I 60 I I 65 I	91	118 126	156 166	199 212	248 264	303 323	363 387	429 457	500 533	577 615	661 704	750 799	844 900
1 70 1 1 75 1 1 80 1	102	133 141 148	176 186 196	225 238 250	281 296 312	342 361 380	410 433 456	485 512 539	565 597 629	653 690 726	747 789 831	847 895 942	954 I 1008 I 1061 I
I 85	113	154	206	263	327	399	479	566	660	762	872	969	1114]
I 90 I I 95 I I 100 I	123	163 170 177	215 225 234	275 287 299	343 358 373	418 436 454	501 523 545	592 618 644	691 721 751	797 832 867	912 952 992	1080 1125	1166] 1217] 1268]
I 105 I	I 134	184	243	311	387	472	/ 566	669	781	901	1031	1170	1318
I 110 I I 115 I I 120 I	144	191 198 205	253 262 271	323 334 346	402 416 431	496 508 525	588 609 630	694 719 744	810 839 8 68	935 969 1002	1070 1109 1147	1214 1258 1301	1748 181 7 18 66
I 125 I 130	I 154	212 218	280 288	357 369	445 459	543 560	651 671	769 793	897 925	1036 1068	1185	1344 1387	1514 1562
I I 135 I I 140		225 232	297 306	380 391	473 487	577 594	692- 712	817 841	954 982	1101 1133	1259 1296	1429 1471	1610 1657
I 145		238 245	315 323	402 413	501 514	611 627	732	845 889	1009 1037	1165 1197	1333 1370	1513 1554	1704 1750
	I 182 I	251	332	424	528	644	752 772	912	1064	1229	1406	1595	1797
	I 187 I 191 I 196	258 264 270	340 349 357	435 446	542 555	661 677 693	792 811 831	935 959 982	1092 1119 1146	1260 1292 1323	1442 1477 1513	1636 1676 1717	1847 1886 1934
I 175	1 201 I 205	277 283	365 374	454 467 478	568 582 595	709 725	850 870	1005 1027	1172	1354 1384	1548 1583	1757 1797	1934 1979 2024
	I I 210 I 214	289 295	382 390	488 499	608 621	741 757	889 908	1050 1073	1225 1252	1415 1445	1618 1653	18 36 18 76	2048 2113
I 195	I 219 I 223	302 · 308	398 406	509 519	634 647	773 789	927 946	1095 1117	1278 1304	1475 1505	1688 1722	1915 1954	2157 2201
i .	I 228	314	414	530	660	805	964	1139	1330	1535	1756	1992	2244
I 215 I 220	I 232 I 236 I 241	326 326 332	422 430 438	540 550 560	672 685 698	820 836 851	983 1002 1 020	1161 1183 1 205	1355 1381 1406	1565 1594 1624	1790 1824 1858	2031 2069 2108	2374 2 374
1	I Bunasas			*****					*****				

BIBLIOGRAPHIE

- ALDER (1980) Estimation des volumes et accroissements des peuplements forestiers.

 Vol. 2, Etude et prévision de la production,
 FAO, 22/2, Ed. FAO, Rome, 229 p.
- ALEXANDRIAN (1982) Le pin pignon, fiches forêt méditerranéenne. Forêt méditerranéenne, Tome IV, n° 2, pp. 323-326.
- ANONYME (1978) Fascicule de gestion de la circonscription de Sidi Ali, Forêt domaniale de Bourahma, Mostaganem.
- ANONYME (1978) Fascicule de gestion de la circonscription de Sidi Ali, Forêt domaniale de Zerrifa, Mostaganem.
- ANONYME (1973) Fascicule de gestion de la circonscripcion de Sidi Ali, Forêt domaniale de Seddaoua, Mostaganem.
- ARTIGUE R. (1967) Recherches sur l'écologie comparée de quelques résineux du genre pinus en forêt de Mamora,
 Ann. Rech. Forest.au Maroc, tome 10; pp. 23-114.
- BAGNOULS F. et GAUSSEN H. (1953) Saison sèche et indice xérothermique.

 Bull Soc Hist Nat Toulouse, t. 88, 1953:

Bull. Soc. Hist. Nat. Toulouse, t. 88, 1953; pp. 191-239.

- BELLEFONTAINE R. (1980) Résultats préliminaires des essais de provenance de <u>Pinus pinea</u> L.

 Ann. Rech. Forest. au Maroc, t. 20; pp. 183-204.
- BNEDER (1979) Etude d'inventaire des terres et forêts de l'Algérie du Nord, Fiches zones homogènes, W. Mostaganem, Rép. Alg.
- BOUDY P. (1948) Tome II: Monographie et traitement des essences forestières, Fasc. 2: Essences résineuses, XVIII, 878 p. Tome IV: Description forestière de l'Algérie et de la Tunisie, 483 p.Paris, Ed. Larose, 1951.

- DAGNELIE P. (1973) Théories et méthodes statistiques, Volumes 1 et 2, éd. Duculot, Gembloux, pp. 316-325.
- DURANT J.H. (1954) Les sols de l'Algérie, 1 vol. 244 p., Alger.
- GHALI M. (1970) Premiers résultats sur la multiplication végétative du pin pignon,
 Ann. Inst. Nat. Rech. Forest. Tunisie, Vol. 3,
 Fasc. 2, 30 p.
- GRECO J. (sans date) Livre à l'usage des brigadiers.

 Ecole de Brigadiers des Eaux et Forêts, 264 p.
- HAMEG L. (1982) Contribution à l'établissement de tarifs de cubage et à la construction d'une banque de données écologiques pour le cèdre de l'Atlas, dans la région de Chréa.

 Thèse, Inst. Agron., I.N.A., Alger, 64 p.
- HARRISSON E. (1966) A handbook of coniferae and ginghoaccae by Dallimore and Bruce Jackson, Revised, pp. 245-247 et 470-475.
- HYDROTECHNIC (1970) Etude de la pluviométrie en Algérie.
- ING (1960) Cartes d'Etat major type 1960 1/25.000 et 1/200.000.
- JACAMON M. (1984) Guide de dendrologie.

 Tome 1, conifères, Ecole Nationale du Génie
 Rural des Eaux et Forêts. Ed. Grif, 88 p.
- LANZARA P. (1977) Les arbres, Glossaire. Ed. Fernand Nathan, Milan - Italie, 355 p.
- LELEUX B. (1984) Contribution à l'étude dendrométrique de <u>Pinus halepensis</u> L. en forêt d'Aïn Zeddim (Monts de Daia, Algérie).

 Mémoire, Ing. Agron. Belgique, 162 p.
- LETREUCH N.B. (1981) Les reboisements en Algéric et leurs perspectives d'avenir.

 Tome II, Dissertation, Doct. Scien. Agroñ.

 Gembloux, 587 p.

- LETREUCH N.B. (1985) Sylviculture.

 Cours polycopié, I.N.A., 126 p.
- MEDDOUR H. (1982) Contribution à l'étude de la croissance de <u>Pinus halepensis</u> Mill en relation avec les groupements végétaux dans la forêt de Baïnem. Thèse, Ing. Agron. I.N.A., Alger, 62 p.
- NAHAL I. (1962) Le Pin d'Alep (<u>Pinus halepensis Mill</u>), Etude taxonomique, phytogéographique et sylvicole.

 Ann. E.N.E.F., tome XIX, Fasc. 4, 208 p.
- PALM R. (1976) Cours de dendrométrie, 4 ème année forêt.

 Cours polycopié, Inst. Nat. Agron. Alger, 112 p.
- PALM R. (1981) Contribution méthodologique au cubage des arbres et à la construction de tables de cubage et d'assortiments, dissertation.

 Doct. Sci. Agron., Gembloux, 295 p.
- PARDE L. (1946) Les conifères.

 Ed. Maison Rustique, Librairie Agricole,
 Horticole, Forestière et ménagère, 294 p.
- PARDE J. (1961) Dendrométrie.

 Nancy, E.N. Eaux et Forêts, 350 p.
- REPUBLIQUE ALGERIENNE (1974) Monographie de la wilaya de Mostaganem.
- RONDEUX J. (1977) Tarif de cubage "peuplement" pour l'Epicea commun en Ardenne.

 Bull. Soc. Roy. Forest., Belgique n° 2,84ème année pp. 124-130.
- RONDEUX J. (1980) Dendrométrie.

 Cours polycopié, Fac. Sci. Agron. Etat

 Gembloux.
 - RONDEUX J. et al (1977) Estimation de la production forestière

 "Principes et application" Note tech. 77.1

 Centre de Recherche et de Promotion Forestière,

 Gembloux, Belgique, 41 p.

- SELTZER P. (1946) Le climat de l'Algérie, Travaux de l'Institut de Météorologie et de Physique du Globe de l'Algérie, Université d'Alger, 219 p.
- REPAL S.N. (1952) Notes sur le bassin néogène du bas Chélif. Ed. Alger, 104 p. + carte.
- STEWART Ph. (1969) Quotient pluviométrique et dégradation biosphérique. Quelques réflexions.

 Bull. Soc. d'Hist. Nat. Af. du Nord, tome 59, pp. 16-25.
- VERRET J. (1974) Identification et classement des bois français. Ed. Imprimerie Louis Jean, 219 p.
- ZERAÏA L. (1981) Essais d'interprétation comparative des données écologiques, phénologiques et de production suberoligneuse dans les forêts de chêne liège en Provence cristallique (France méridionale et Algérie).

 Thèse, Doct. d'Etat, 367 p.