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ABSTRACT

In the present work, a study of the mixed convection flow of low Prandtl number fluid (
015.0Pr  ) confined in a cylindrical container having an aspect ratio equal to 2, with and

without magnetic fields, has been considered. The finite volumes method has been used to resolve
the equations of continuity, momentum (or Navier-Stokes), energy and electric potential. In the
absence of magnetic field, the numerical results obtained show the appearance of
oscillatory instabilities for the values of the critical Reynolds number

,802,924,2575Re cr and 606 , corresponding respectively to the values of the Richardson

number Ri 0, 0.5, 1.0 and 2.0. However, in the presence of the vertical magnetic field, the fluid

continues its stable flow until the values of Reynolds number greater than those predictable
to have oscillatory instabilities. Stability diagrams have been established according to the numerical
results of this investigation. These diagrams put in evidence the dependence of the critical Reynolds
number and critical frequency of oscillations with the increase of the Hartmann number for various
values of the Richardson number. In conclusion, the stabilizing technique of the mixed
convection flows of fluids having low Prandtl number (semiconductors) by the application of an
external magnetic field is practically reliable.
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1. INTRODUCTION

The incompressible viscous fluid flow confined in a cylindrical enclosure induced
by the rotation of one or more walls of the cylinder which contains the fluid was
studied intensively and on several occasions during the last years. This type of
flows can occur in many practical situations [1]: rotational viscosimeters, centrifugal
machinery, pumping of liquid metals at high melting point, crystal growth from
molten silicon in Czochralski crystal pullers [2], geophysical systems [3]... etc.

After this foreword, we expose some work available in the literature which treats
the flow in question, with and without heat transfer by forced and mixed
convection. Gelfgat et al.[4] presented a very detailed numerical study stable
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states and beginning of oscillatory instabilities of the incompressible Newtonian
fluid flow confined in a vertical cylinder. Bessaïh et al.[2] carried a numerical
study on rotating MHD laminar flow of a liquid metal contained in a cylindrical
enclosure, having an aspect ratio equal to 1 and subjected to a vertical external
magnetic field. A good agreement between the asymptotic and numerical results
was obtained by the authors. They showed that we can control the primary flow
by a good choice of the electric conductivity of the enclosure walls in question.
Bessaïh et al.[3] carried out a numerical and analytical combined study of the
same flow already mentioned in [2]. They showed the strong dependence of the
flow and heat transfer structures with the magnetic field and the electric
conductivity of the walls constituting the cylindrical enclosure.

The present work investigates numerically the determination of hydrodynamic
and thermal instabilities which are created in a cylindrical chamber having an
aspect ratio equal to 2, filled with a liquid metal and having a rotating top disk.
This configuration (Fig.1) is subjected to a constant vertical magnetic field. We
determine the critical value of the Reynolds number crRe for each value of

Richardson number,  2Re/GrRi 0, 0.5, 1 and 2, and each value of Hartmann

number   /BRHa 0, 5, 10, 20, 30, 40, 50, and 60.

2. GEOMETRY AND MATHEMATICAL MODEL

The geometry of the flow field analyzed in this study is illustrated in Fig. 1. The
flow field driven by a rotating top wall, with an angular velocity , is assumed
to be axisymmetric. A liquid metal with a density  , a kinematics viscosity 
and an electrical conductivity , fills a cylinder of radius R and height H is
submitted to an axial magnetic field B . The top end wall rotates with a constant
angular velocity . The bottom wall is kept at a local hot temperature hT , the

top rotating disk is maintained at a local cold temperature )( hcc TTT  , and the
sidewall is adiabatic.
The dimensionless equations describing the flow: the continuity, Navier Stokes,
energy and potential equations, together with appropriate boundary conditions
in the cylindrical coordinate system ),,( zr  are
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Fig.1. Geometry of the physical problem.
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At )0,10(0,0,0,0,0,0   zrwvu

For ,0 = 0, = 0, = 0, Θ = 0, Φ = 0 ( = 0, 0 ≤ ≤ ).
(7a)
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= 0, = 0, = 0, Θ = 0, Φ = 0 ( = 1, 0 ≤ ≤ ).
(7b) = 0, = 0, = , Θ = 0, Φ = 0 ( = , 0 ≤ ≤ 1).
(7c) = 0, = 0, = 0, Θ = 1, Φ = 0 ( = 0, 0 ≤ ≤ 1).
(7d)

The governing equations were solved using a finite volume method (see,
Patankar [4]). Scalar quantities ( , Θ, , ) are stored in the centre of these
volumes, whereas the vectorial quantities ( and ) are stored on the faces. For
the discretisation of spatial terms, a second-order central difference scheme was
used for the diffusion and convection parts of the equations (2-5), and the
SIMPLER algorithm [4] was used to determine the pressure from continuity
equation. The grid used has 16080 nodes and was chosen after performing grid
independency tests, since it is considered to have the best compromise between
the computing time and the sufficient resolution in calculations. Calculations
were carried out on a PC with 2.8 GHz CPU, thus, the average computing time
for a typical case was approximately of 8 hours.

3. RESULTS AND DISCUSSION

3.1. Validation of the code

With an aim of allotting more confidence to the results of our numerical
simulations, we have established some comparisons with the experimental
investigation presented in the literature [5]. Comparison has been made for the
axial distribution of the azimuthal velocity w at = 0.60, with experimental
measurements obtained by Michelson [5], which used the LDA technique to
determine the azimuthal velocity w in a cylindrical cavity, whose higher disk is
in rotation, for = 1800 and = 1 (Fig. 2). It is clear that the computed values
can be seen to be in excellent agreement with measurements over the whole flow
field.
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Fig. 2. Validation of the code with experimental measurements (Michelson [5]),

for = 1800, = 1 and = 0.
3.2. Solution with magnetic field ( 0Ha )

In the presence of the magnetic field B , the increase of Reynolds numbers Re ,
the flow beyond those known as critical will generate a junction of the flow
towards the unstable mode (Fig.3), as well as a multiplicity of the frequencies
of oscillations in the flow will take place, as mentioned in [6]. This is illustrated
in figure 3b, which shows the prevalent frequencies of oscillation for some cases
of the oscillatory flow. This spectral analysis is the result of the application of
the fast Fourier transform of temporal evolutions of some parameters.

Fig. 3. Temporal evolutions for 961Re cr , 5.0Ri and 5Ha : (a) temperature 

and (b) density of the spectrum of energy according to the frequency. Where S5

(r=0.486, z=0.967), S6 (r=0.90, z=0.967, and S7(r=0.099, z=1.80) are the probes of

recordings.

We present the temporal evolution during one period of the dimensionless radial
velocity u for the case where 961Re cr , 5.0Ri and 5Ha , and we indicate

the various moments noted by: ghfedcba  ,,,,,,, (fig. 4).

Figure 5 shows the dimensionless stream functions . During the dimensionless

times (( ....,, cba  ),we notice the existence of a simple cell close to the side
wall having a positive mass flow (in dotted lines). Also, this cell dilates and
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narrowed during time ( ....,, cba  ), this process for one period of

28.4202365.0/1/1 crF .

The application of a vertical magnetic field is recognized on the stability of the
convective flows [2-4]. With regard to the dependence between the critical
Reynolds number and the magnetic field intensity, the growth of crRe with the

increase of Ha clearly seen in the stability diagram ( crRe - Ha ), (Fig. 6). This

growth is monotonous except for the case for 0.2Ri and 30Ha , where a
slight reduction of crRe , (this case was also obtained by Gelfgat [6]). This growth
is explained by the interaction of the vertical magnetic field on the mixed
convection flow, this one is produced with the radial component of the velocity.
Consequently, a stronger magnetic field is necessary to keep the stable flow for
certain high values of the Reynolds number.

4. CONCLUSIONS

A numerical study of the mixed convection n a cylindrical enclosure filled
with a liquid metal, subjected to a vertically magnetic field, has been made.
The finite volumes method has been used to solve numerically the transport
equations. Our numerical simulations have been presented for various values
of the Hartmann ( Ha = 0, 5, 10, 20, 30, 40, 50 and 60) and various values
of the Richardson number ( Ri = 0., 0.5, 1.0, and 2.0), in order to see their effects
on the value of the critical Reynolds number, crRe and of the critical frequency of

oscillation, crF in the presence of the vertical magnetic field, the fluid continues
its stable flow up to the values of Reynolds number larger than those foreseeable
to have oscillatory instabilities although the application of a magnetic field
causes a remarkable change of the flow and heat transfer structures.
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Fig. 4. Temporal evolution of u at point S1 (0.099, 0.2) with various times  (a, b, c, d,

e, f, g, h), for 961Re cr , 5.0Ri and 5Ha .

Fig. 5. Time history of the dimensionless streamlines  at various

dimensionless times for 3504Re cr , 5.0Ri (predominant forced

convection), and 60Ha .
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Fig. 6. Stability diagram ( crRe - Ha ).

NOMENCLATURE

B Magnetic field, Tesla
F Dimensionless Frequency

LLr FF , Dimensionless Lorentz force in the radial and azimuthal directions,
respectively

g Gravitational acceleration, m.s-2

H Height of the cylinder, m
N Interaction parameter
P Dimensionless pressure
R Radius of the cylinder, m

zr ,, Dimensionless radius, azimuthal and height

ch TT , Temperature of the hot and cold walls, K

u Dimensionless radial velocity
v Dimensionless axial velocity
w Dimensionless azimuthal velocity

Greek Symbols
 Kinematic viscosity ,m2 /s
 Density of the fluid , kg /m3

 Electrical conductivity , 1/m
 Thermal expansion coefficient, 1/K
 Angular velocity, rad /s
 Dimensionless electric potential
 Dimensionless stream function
 Dimensionless temperature
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 Aspect ratio
 Dimensionless time

Non-dimensional Numbers
Gr Grashof number
Ha Hartmann number
Pr Prandtl number
Re Reynolds number
Ri Richardson number
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