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Abstract : In this article, we present the construction ofeslsers of rotor flux and mechanical speed
needed for robust control of the asynchronous mma&chifwo observers will be developed for
comparison. The first is based on the technics MRl the second is observer of KUBOTA, with
the enhanced DTC, "sensorless DTC". The validitythaf proposed methods is confirmed by the
simulation resultsThis work is devoted to the construction of rotoaxfobservers and the mechanical
speed necessary for the robust control of the &sgnous machine. Two speed observers will be
developed for comparison. The first is based onMfAS technique and the second is based on
KUBOTA, with the improved DTC-ANN command "sens@deDTC control".

Keywords: IM, Two-level DTC, Kubota observer, MRAS observer.

1. Introduction

Getting high performance with an asynchronous nmeghirequires complex control including
requiring reliable information from process contrtlis information can reach the sensors, they
dedicated the weakest link in the chain, so itsttie fill their functions by calculation algorithms
reconstructing the machine states, such toolsterendame of estimators and observer for reasons of
cost or technological reasons, it is sometimesréstrictive measure some quantities of the system.
However these quantities may represent importdotrimation for control or monitoring [1]. It is
necessary to reconstruct the evolution of thesebims that are not directly from the sensors. We
must therefore carry out an indirect sensor. Fas, tthe estimators are used or as appropriate,
observers [2].

The DTC control methods of asynchronous machinggaed in the second half of the 1980s as
competitive with conventional methods, based os@ulidth modulation (PWM) power supply and
on a splitting of flux and motor torque by magndigdd orientation, Indeed, the DTC command from
external references, such as torque and flux, doesearch, as in conventional commands (vector or
scalar) the voltages to be applied to the machinesearch "the best "state of switching of thesiter
to meet the requirements of the user [3].
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Major disadvantage of DTC is the ripple on the dewgnd the flux and to remedy this last problem
one improves the control DTC by several techniqaraeng these methods are modification the tables

of selection, the artificial intelligences whichirderested in this article and the flux and spaiex
estimate by the KUBOTA and MRAS observers.

In this work, our main objective Comparative stumtween DTC-ANN using KUBOTA observer
DTC-ANN using MRAS observer ,and to evaluate thiicieincy of each of them by comparing the
ripples and the time of response, especially atllsppgeds and more importantly, quantification
observation erroeach observer.

2. DTC control

Since Depenbrock and I. Takahashi proposed DTG aanitthe asynchronous machine in the mid-
1980s, it has become increasingly popular. The @d@mand makes it possible to calculate the
control quantities that are the stator flux and #hectromagnetic torque from the only quantities
related to the stator and this without the inteta@nof mechanical sensors [4].

The principle of control is to maintain the staflux in a range. The block diagram of the DTC
control is shown in fig.1

This strategy is based generally on the use ofehgsis comparators whose role is to control the
amplitudes of the stator flux and the electromagrtetque.

t
®sg = 1 (vsg ~ Rgigg)

° (1)
CDS,B = '[(VS,B - Rsisﬁ)dt

0
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Fig. 1 Structure of classical DTC.
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W ref

The DTC control method allows direct and indepehddactromagnetic torque and flux control,
selecting an optimal switching vector. The Fig.h®ws the schematic of the basic functional blocks
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used to implement the DTC of induction motor drivevoltage source inverter (VSI) supplies the
motor and it is possible to control directly thatet flux and the electromagnetic torque by the
selection of optimum inverter switching modes [5].

The switching table allows to select the appropriaverter switching state according to the stéte o
hysteresis comparators of flux (cfland torque (ccpland the sector where is the stator vector flux
(9s) in the plan ¢,p), in order to maintain the magnitude of statoxfand electromagnetic torque
inside the hysteresis bands. The above considerallimvs construction of the switching table [6].

TABLE.1
THE SELECTION OF ELECTRIC TENSION

AQs ACe | Sector 1 Sector 2 | Sector 3 Sector 4 Sector 5 Sector 6
0 1 V3 V4 Vs V6 Vl VZ
O VS V6 V1 Vz V3 V4
1 1 Vz V3 V4 Vs V6 Vl
O V6 V1 Vz V3 V4 VS

sense of rotation

b,
— ﬂq:.
o -".-'H-‘__:_.-— B j ..}{.@_h.,
.—'/! z"’l N -x-.-‘-"" o
S\ e

"

(¢

-Adb, A,

Fig.2 Voltage vectors.

3. DTC with ANN

Conventional DTC control has several disadvantagesh as obtaining a variable switching
frequency, torque and flux ripples, power fluctaati, and harmonic currents in the transient and
steady state, because of the use of hysteresisatatops and switching tables. For this, we proposed
to study in this part the direct control of therplaased on artificial neural networks, to improkie t
performance of the DTC commands, where the conmeaiticomparators and the switching table are
replaced by a neural controller, so to drive thgpouquantities of the MAS to their reference value
for a fixed period of time. Numerical simulationseapresented to test the performances of the
proposed methods (DTC-RNA) [7].

The structure of the direct neural control of tleeqtie (DTCRNA-2N), of the asynchronous
machine powered by two-level NPC inverter, is repreed by fig3.

The update of the weights and Bias of this netwsrarried out by a retro-propagation algorithm
called the Levenberg-Marquardt (LM) algorithm.
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Fig. 3 Commande directe du couple de la MAS basges RNA.

The choice of neural network architecture is basedhe mean squared error (MSE) obtained
during learning [8]. The following figure shows ttstructure of neural networks for two-level

neuronal.

(—1 g »()

Input  Process Input 1 Layer 1 af1}
Layer 2

afl1} Process Qutput 1 Qutput

Fig.4 Structure of neural controller

4. The observation

The estimators used in open loop, based on theousecopy of a model representation of the
machine. This approach led to the implementatibsimple and fast algorithms, but sensitive to
modeling errors and parameter variations duringatjmn [9].

Is an estimator operating in a closed loop andritpaein independent system dynamics. It estimates
an internal physical quantity of a given systensdobonly on information about the inputs and owput
of the physical system with the feedback inputtwf error between estimated outputs and actual
outputs, using the K matrix gain to thereby adjbstdynamic convergence error [10].
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Fig.5 Structure of the DTC-Neuro control sensorlegl MRAS and KUBOTA observers

4.1.Representation of the Observer of KUBOTA [11].

Vs

Fig. 6 Structure of the adaptive Kubota observer.

4.2.Modeling the observer KUBOTA[11,12,13,14,15].
» State model

[
x = A + Bu [a]=| AL AL2 I's
_ = X =
y = Cx A21 A22 .

] )

So the observatory associated with this moderittem as:

dx ~_ _ T 4)
o Mt BustC(mTY) G-

g1 92 93 9y
—d2 91 ~941 93

By askingthae=x-X estimation errotiEen the model and the observer:
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+ Estimation error

de - -
a:(A—GC)e—AAX AA= A- A= {

« Adaptation mechanism

The speed adjustment mechanism is derived fronapipdication of Lyapunov theorem on system
stability. Let Lyapunov function defined positive:

®)
0 Awd

V =ze' e+

T (W_/]W)Z (6)

Otherwise, the derivative of this function with pest to time is negative:

dv dw (7

T: el Qe - ZAW[k(eisa [p’rﬁ “eisfPra _H)}
disa "isa TisaeisBTisBTi SR @®)
Q= (A-GC )T +(A-GC)

Equation (8) must be set negative according td_gfaunov stability theory. Therefore, by careful
selection of the gain matrix G, the matrix Q musté negative definite matrix and the adaptation
mechanism for estimating the speed will be redunedancellation of the 2 term of the equation
(09).

The estimate of the speed is done by the followamg

w = k/]f(e ¢“ —eisﬂf ) dt
is a r g ra )

To improve the speed of dynamic observation, prejjosise Pl instead of a pure integrator:

@ = kp-(eisa rp _eisﬁfra)“L kil(eisa érp _eis,é’fra)dt (10)

4.3. Adaptatif system with reference model ‘MRAS’

This technics is designed on the basis of an adaptistem using two estimators flow; the first not
introducing speed is called the reference modevdtinge model). The second, which is a function of
speed is called adjustable model (or current motied) error produced by offset between the outputs
of the two pilot estimators an adaptation algoritiiat generates the estimated speed [16].
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Fig.6 The MRAS technique estimation mechanism.
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4.4. The basic model{17,18,19,20,21]

From stator and rotor equations of the asynchronmachine, we have:

+ Reference model

d
7‘2{“ =I,;/Tr(Vsa_Rs-lsa_‘7Ls-dldtsa) 1)
dérp _ Ly _ _ d sg

@ m WsgTRsIsp "I Ls g )

* Adjustable model:

d 1 = M

(Ztra = _:Jra “PQgg T, 'sa

12)

dérp _ 1 ~ M (
AL

The algorithm of adaptation is chosen so as to @gevthe adjustable model to the reference model
thus minimizing the error and have the stabilityttef model. For this, the algorithm parameters are

defined according to the criterion of hyper stapifiaid Popov
The error between the states of the two modeldbeaxpressed in matrix form by:

{ga]:{¢ra _fra]
ep] | bip B (13)

_{m}_vmy@_@) Slel= (Al [e]- v ]

£p Frp

Tr
1
w _
Tr

d |ea _
dt e p B

Schauder offers an adaptation law that meets ttexion of Popov and given by the equation:

- t
w:Q2(£)+g)Q1(£)dr (14)

The criterion of Popov requires satisfaction of fillowing integral:

t (15)
ng.Wdt 2—y2,y>-0
0

Using equation (5), while replacirgand w by their values, we obtain:
t ] t a2 .
Wea-#rp=epdral w—Qz(g)—cj)Ql(e)dr t=- (16)
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The solution of equation (16) can be found usirgftllowing relation:

¢ (o
ék-( dt(t)j f)d = - i 02 k=20 17)

Using the latter equation for solving Popov of itiegral, the following functions are obtained:

Q1° M(¢rﬁ'ara'_¢ra-arﬁ)

18
Q2:kP(¢rﬂ'ara_¢ra'ar,8) ( )

By replacing this system of equations in equatibn) (yields the value estimated by the following
adaptation law:

t
w= kp(¢f,3'¢rra - ¢m'¢rf,3) * ki(j)wrﬂﬁra_‘tm'ﬁrﬁ) (19)
5. Result of simulation

The direct torque control applied to an asynchrenmachine is simulated under the Matlab/
Simulink environment. The simulation is performedier the following conditions:

The hysteresis band of the torque comparator ishig case, fixed at £ 0.1Nm and that of the
comparator of the flux at + 0.001 whb., and refeeapg = 1 Wh.
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Fig.7 DTC-ANN control with MRAS observer
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These results prove that our sensorless contrbl adaptation of is insensitive to the variationshef

stator resistances. It is also noticed that theender corrects well the rotor flux (the squareths
rotor flux) and the speed of rotation, since th8nested quantities follow 'an acceptable way the

actual magnitudes of the machine, hence a traakirgy is almost zero between the two siZdss
implies a stable observation. But we have a probbérthe ripples, especially for the observer of
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KUBOTA, we can say that the MRAS estimator is ralwg bringing the observer of KUBOTA in
this case.

Fig. 9 Testing the robustness of low speeds (5(adl3 s)

Table.1 Comparison between the performances of KUB@nd MRAS

T 60

R ‘ Precision‘ swiftness Oscillation | Low speed|
‘f T

the speediad/s)

the flux(Ab)
o
(&}

the fluxAb)
. . © b ¥
)
—
I
I
I
I
F——bF-——F——t——+ -+ =+ =

ob-L_L_bt_vt_v_1_1_1_21k |
| ]
|
|
|
ML
|
|
|
|

S T A AR R

o
o
o

time(s) time(s)

This table shows that the simulation results usantjficial intelligence techniques (neural
hysteresis) show that the tracking of the set psiperfect. We note that the ripple of electronsin
torque and stator flux reduces perfectly compameadnventional DTC without neural hysteresis
comparatolit is more apparent throughe trajectory of the stator flux In addition tdaage decrease
in THD as shown in the table above , We were abledanclude that the DTC control by neural
hysteresis showed good performance than the cé$3icC control.

Simulation results show that using the observemigortant in the control of the machine, the
estimation error as zero in the steady state,nidjer advantage for KUBOTA observation technique
it's insensitivity to the machine settings.

6. Conclusion
In this paper, we mainly presented the estimatibthe rotor flux by the KUBOTA adaptive state

observer, then we evaluated the estimation errothef flux, we also devoted to improve the
performances of the direct control of the torquéhef asynchronous two-level UPS powered machine
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based on artificial intelligence techniques by aklnysteresisThe simulation results show that the
use of both estimators is important in the contfdhe MAS, the transient and very short regime and
the error between the flows estimated and meagoreero in the steady state, the robustness tésts o
the estimator are also verified. According to timusation results too, we notice that the estimatiy
MRAS technique performance (a little overflow, shmsponse time, no oscillations, robust), but the
observer KUBOTA also play its role, and give goedult and almost similar by contribution to the
1st observer The major disadvantage of the spaadad®n based on MRAS is its high sensitivity to
the parameters of the machine For this, severdtsmoave proposed online adaptation techniques the
stator resistance and also rotor resistance.

Finally we can say the use of the estimator brangkear improvement to the looped structure.
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