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A direct torque control of the induction motor basedl
on the fuzzy logic and ANFIS controller
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Abstract: In this work, a direct torque control with 36 sastof the induction motor (IM) drive controlled by
intelligent controllers is proposed. The proposedt®| scheme uses the electromagnetic torquesethoough
an adaptive neuro-fuzzy inference system (ANFIS) #re classic Pl speed controller based the fuagicl
controller. Simulation results by using ANFIS caflgr and fuzzy logic are compared with those of th
conventional direct torque control (DTC) with 3&&es. The comparison results of direct torque rabnwith
intelligent controllers illustrate the reduction tine torque, THD (Total Harmonic Distortion) valoé stator
current and stator flux ripple and the validitytbé proposed control is confirmed by the simulatiesults.
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1. Introduction

Induction motors are suitable electromechanicaltesys for a large range of industrial
applications. This is due to their high reliabilityelatively low cost, and modest maintenance
requirements [1]. However, IMs are considered asonlinear, multivariable and highly coupled
systems [2]. For this reason, IMs have been useeécedly in closed-loop for variable speed
application. Even the IM is possible for high peton torque and speed command through highly
preserved command method [2].

There are two most common AC drives command schéhasare being widely researched. One
of it is Field Oriented Control (FOC) which was posed by F. Blaschke. Second scheme is Direct
Torque Control (DTC) which was proposed by |. Tagt and T. Noguchi [3]. DTC provides very
quick responses with simple command structur@ laence, this command scheme is gaining
popularity in industries. Through, DTC has high ayric performance; it has few drawbacks such as
high ripple in torque, flux, current and variationswitching frequency of the inverter [4]. In rete
years, there has been great interest in multileweadrters technology [5]. Special attention hasnbee
paid for Neutral Point Clamped inverter (NPC).

The diode clamped multilevel inverter has been usedC drives over the last decade. It uses
clamping diodes and a group of cascaded DC capadiboachieve multiple levels in the inverter
output voltage for the reduction of dv/dt and THChe diode clamped inverter also features high
operating voltage without switching devices in eglj6]. The inverter can be configured as a three-,
four-, or five-level topology,...etc, in this papee used five-level NPC inverter.

By utilizing the multilevel inverter in DTC schemie choices of voltage vectors that can be used
to control the torque and flux are increased [#}.t@e other hand, the multilevel direct torque oaint
of electrical drives has become an attracting tapiesearch and academic community over the past
decade [8]. This paper proposes a novel schemé& sk8tors DTC command to improve the drive
performance. Intelligent direct torque control withe-level NPC inverter is used to improve dynamic
response performance and decrease the torque aipgl@HD value of stator current.
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2. DTC Control with 36 sectors

The principle of DTC is decoupled and simultanecastrol of torque and stator flux is achieved
by direct adjustment of the stator voltage, in adance with the torque and flux errors, without
intermediate current control and/or decoupling rekw The instantaneous values of flux and torque
are calculated from measured variables (voltagecanents) and then directly controlled by selertin
optimum inverter switching modes so that the regfumptimum voltage vector is generated [9]. DTC
is the first technique to control the “real” motamtrol variable of torque and flux [10]. The Figud
show the schematic of the basic functional blocgsduto implement the DTC of induction motor
drive [11].

The stator flux can be evaluated by integratingiftbe stator voltage equation [12]:
t
Pg = J(Vs_Rs-is)jt (1)
0

The magnitude of the stator flux can be estimated b

Ps=\ D5y *+ D35 2)

The stator flux sector is determined by the compthepg, and s The angle between the

referential andp g is equal to [4].

6= arctg(%) ) (3

Psg
Torque can be calculated using the componentsaédtimated flux and measured currents:

3
Te= P Plosgisp ™ dspisa) 4)
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Figure. 1 Conventional DTC control of IM drives.
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2.1 Five-Level NPC I nverter

Multilevel inverters are an alternative to tradma two-level and three-level inverters. These
inverters allow you to convert the electrical eyepgovided by direct current sources, such as
batteries or solar panel banks, into an ideal radtiarg current of sine wave form whose parameters
(amplitude, frequency) can be fixed or variable][1Qultilevel inverters have the advantages of
overcoming voltage limit capability of semiconducswitches, and improving 2 harmonic profiles of
output waveforms [8]. The NPC topology has beerstanted by higher number of power switches
so thus additional control scheme required. DC fhiekitral point clamping is need for maintaining
balanced voltage [2].

By using a multilevel inverter in the classical DE€heme of IM, a more precise control of torque
and flux can be achieved from extra flexibilitysalecting the optimum voltage vector [14]. Figite.
shows the circuits of a five-level diode clampedeitter [15]. Each leg is composed of four upper and
lower switches with ant-parallel diodes. Four sefi¥C-link capacitors split the DC-bus voltage in
half. The necessary conditions for the switchiragest for the five-level inverter are that the Dikli
capacitors should not be shorted, and the outpuémushorted be continuous [16]. Each leg of the
inverter can have five possible switching states, 42, 1 or O.

Figure. 2 Schematic diagram of a five-level inverter.

A five-level voltage inverter can achieve 60 sepapmsitions in the phase corresponding to the 61
sequences of the voltage inverter. The representafithe space voltage vectors of a five-level NPC
inverter for all switching states is given by FiguB [17].
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Figure. 3 Space vector diagram of five-level inverter.

2.2 Switching Table of Five-Level DTC Control

Two-level stator flux and three-level torque hyssis controllers (Figure. 4) are used according to
the outputs of the torque controller and the saaformation, appropriate voltage vectors for bibté
inverters are selected from a switching table a&sshown in Table 1.
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b) Three-level torque comparator.

Figure. 4 Hysteresis comparators.
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Table 1. Proposed switching Table of five-level inverter

Cflx
1 0
N Ccpl
1 0 -1 1 0 -1

1 14 2 54 24 32 44
2 15 2 55 25 32 45
3 18 2 58 28 32 48
4 18 7 58 28 37 48
5 20 7 60 30 37 50
6 24 7 4 34 37 54
7 24 12 4 34 42 54
8 25 12 5 35 42 55
9 28 12 8 38 42 58

10 28 17 8 38 47 58
11 30 17 10 40 47 60
12 34 17 14 44 47 4
13 34 22 14 44 52 4
14 35 22 15 45 52 5
15 38 22 18 48 52 8
16 38 27 18 48 57 8
17 40 27 20 50 57 10
18 44 27 24 54 57 14
19 44 32 24 54 2 14
20 45 32 25 55 2
21 48 32 28 58 2 18

7

7

22 48 37 28 58
23 50 37 30 60
24 54 37 34 4 7 24
25 54 42 34 4 12 24
26 55 42 35 5 12 25
27 58 42 38 8 12 28
28 58 47 38 8 17 28

29 60 47 40 10 17 30
30 4 47 44 14 17 34
31 4 52 44 14 22 34
32 5 52 45 15 22 35
33 8 52 48 18 22 38
34 8 57 48 18 27 38
35 10 57 50 20 27 40
36 14 57 54 24 27 44

3. DTC with Intelligent Controllers

The principle of 36 sectors DTC control with intgéint controllers is similar to conventional DTC
with five-level NPC inverter. The difference is mgian adaptive neuro-fuzzy inference system
(ANFIS) controller to replace the torque hysterdsisp controller and fuzzy logic controller. As
shown in Figure. 5. The main objective of this gtiglthe reduction of electromagnetic torque ripple
stator flux ripples and THD value of stator current
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Figure. 5 DTC with intelligent controllers.

3.1 Design of Fuzzy Speed Controller

In the objective to control the static error andréduce the time response while preserving the
system stability, the proportional integral coroedPl used is replaced with a fuzzy logic contiolle
[18]. The fuzzy control is basically nonlinear aadbptive in nature, giving robust performance under
parameter variation and load disturbance effet.[19]

Fuzzy logic speed controller design is designe@das the human expert knowledge rule base. It
does not require any mathematical model of thetd2®]. The fuzzy controller design is based on
intuition and simulation. These values composeamittg set which is used to obtain the table rules
[21]. The block diagram of the fuzzy logic speedtcoller is shown in Figure. 6.

On possible initial rule base, that can be usedfive systems for a fuzzy logic controller, consist
of 49 linguistic rules, as shown in Table 2 [22],28d gives the change of the output of fuzzydogi
controller in terme of two input: the error (emw w) and change of errotg).

Table 2. Fuzzy rules of speed

e NL NM NP EZ PS PM PL

Ae
NL NL NL NL NL NM NP EZ

NM NL NL NL NM NP EZ PS

NP NL NL NM NP EZ PS PM
EZ NL NM NP EZ PS PM | PL
PS NM NP EZ PS PM PL PL
PM NP EZ PS PM PL PL PL
PL EZ PS PM PL PL PL PL

wref o (wref-w) Tetef
T . L ' Fuzzy speed controller [——

deldt ——

Figure. 6 Fuzzy logic control of speed.
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3.2 Design of ANFIS Torque Hysteresis Compar ator

The ANFIS controller combines fuzzy logic and actdl neural networks to evaluated the
reference voltage required to drive the flux andjie to the demanded values within a fixed time
periode [24]. The ANFIS is a class of adaptive itayter feed-forward network that is functionally
equivalent to a fuzzy inference system. Each neumaime ANFIS applied a particular function on
incoming signals as well a set of parameters rgjaid the neuron. To identify the adaptive network
parameters, this fuzzy inference method employykaidh learning algorithm which combines the
gradient method and least squares estimate (LSE).oNly can this hybrid learning algorithm
guarantees to find global minima, but it also dases the convergence time of the network due to
decreasing dimensions of research space in théagtadethod [25].

In this paper, the ANFIS controller of torque hyssis for five-level DTC with 36 sectors was
developed. The Adaptive Neuro-Fuzzy inference syste developed using Matlab. The block
diagram for ANFIS based torque hysteresis contralehown in Figure. 7.

Ccpl
Te ref ANFIS controller P ,
of torque hysteresis
} Te

Figure. 7 ANFIS control of torque hysteresis controller.

Then the designed ANFIS has two inputs namelyyéference torque and estimated torque while
the output is the Ccpl (Torque hysteresis contrpll€he structure of ANFIS torque controller is
shown in Figure. 8.

The developed fuzzy rules (7x7) are included inAN-IS controller and are not shown here for
the sake of convenience. The control decisionsra@e based on the fuzzified variables in the Table.
2. The inference involves a set of rules for deteimg the output decisions. As there are 2 input
variables and 7 fuzzified variables, the contrafias a set of 49 rules for the ANFIS controllert Gfu
these 49 rules, the proper rules are selectedebirdiming of the neural network with the help athk
propagation algorithm and these selected rulefixa@@. Further, it has to be converted into nurnadric
output, i.e., they have to be de-fuzzified.

Input NNET  Outpu

Cepl

p| dudt —p

Te*

Figure. 8 ANFIS structure for torque hysteresis comparator.

4. Results

The simulations of the five-level DTC with inteléigt controllers of induction motor drive are
compared with classical DTC with five-level invert& 3-phase, 3 pole, induction  motor  with
parameters of Rs=0.228 Rr=0.332), Ls=0.0084H, Lr=0.0082H, Lm=0.0078H, J=K@.m2 are

considered
The performance analysis is done with stator ctrretator flux and torque plot. The dynamic
performance of the conventional five-level DTC g¢ohtith induction motor is shown Figure. 9. The

dynamic performance of the five-level DTC contrathnintelligent controllers (ANFIS controller
of torque hysteresis and fuzzy speed controllesh@vn Figure. 10.
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Figure. 9 Dynamic responses of conventional DTC with fiveeleinverter for IM.
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Figure. 10 Dynamic responses of five-level DTC with intelligecontrollers for IM.

From the simulation results presented in Figures0 % is apparent that the THD value of stator
current for the five-level DTC with intelligent coollers (ANFIS and fuzzy logic) is considerably
reduced. Table 3 shows the comparative analysi$i@f value for stator current.
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Table 3. Comparative analysis of THD value

Conventional five-level DTC Five-level DTC with intelligent controllers
25.92% 17.96%

Figure. 11(a) shows torque ripples for conventidaC with five-level inverter have a large value
of ripple, while Figure. 11(b) shows torque ripfide 36 sectors DTC with intelligent controllers
(ANFIS and fuzzy logic controllers) which has a imiom value of ripple.
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b) DTC with intelligent controllers
Figure. 11Zoom in the torque.

Figure. 12 shows the stator flux responses of bioéh conventional and five-level DTC with
intelligent controllers. It is found that the prgea DTC scheme exhibits smooth response and lesser
ripple in the stator flux as compared to the cotresial five-level DTC scheme.
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b) DTC with intelligent controllers
Figure. 12Zoom in the stator flux.
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5. Conclusion

In this paper, we proposed intelligent controlléss torque hysteresis and speed controller of
induction motor controlled by five-level DTC witt63ectors. Using intelligent controllers (ANFIS
and Fuzzy logic) reduces the THD value of statarent, torque ripple and stator flux ripple of
induction motor performance compared to obtain vatlklassical controller (classic Pl and torque
hysteresis controller). The simulation results tgtd were satisfactory, and system stability hanbe
insured.
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