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ABSTRACT

This paper is concerned with the investigation of thermoelastic interactions
in an isotropic unbounded medium with spherical cavity due to the pre-
sence of moving heat source in context of linear theory of thermoelasticity
with one relaxation time [1]. Laplace transform technique has been used
to obtain the expressions for radial stress, equilibrated stresses and tem-
perature distribution. A numerical inversion technique has been applied to
recover the resulting quantities in the physical domain. The components of
stress and temperature distribution are depicted graphically to show the
e¤ect of heat source velocity and the relaxation time parameters. Some
particular cases are also deduced from the present investigation.

c
2016 LESI. All rights reserved.

1. Introduction

Porous media theories play an important role in many branches of engineering inclu-
ding material science, the petroleum industry, chemical engineering, biomechanics and
other such �elds of engineering. Biot [2] proposed a general theory of three-dimensional
deformation of �uid saturated porous salts. One important generalization of Biot�s theory
of poroelasticity that has been studied extensively started with the works by Barenblatt
et al. [3], where the double porosity model was �rst proposed to express the �uid �ow in
hydrocarbon reservoirs and aquifers.
The double porosity model represents a new possibility for the study of important

problems concerning the civil engineering. It is well-known that, under super- saturation
conditions due to water of other �uid e¤ects, the so called neutral pressures generate
unbearable stress states on the solid matrix and on the fracture faces, with severe (so-
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metimes disastrous) instability e¤ects like landslides, rock fall or soil �uidization (typical
phenomenon connected with propagation of seismic waves). In such a context it seems
possible, acting suitably on the boundary pressure state, to regulate the internal pressures
in order to deactivate the noxious e¤ects related to neutral pressures ; �nally, a further
but connected positive e¤ect could be lightening of the solid matrix/�uid system .
Aifantis[4-7] introduced a multi-porous system and studied the mechanics of di¤usion

in solids Wilson and Aifanits [8] presented the theory of consolidation with the double
porosity. Khaled et. al [9] employed a �nite element method to consider the numerical
solutions of the di¤erential equation of the theory of consolidation with double porosity
developed by Wilson and Aifantis [8]. Wilson and Aifantis[10]discussed the propagation of
acoustics waves in a �uid saturated porous medium. The propagation of acoustic waves in
a �uid-saturated porous medium containing a continuously distributed system of fractures
is discussed. The porous medium is assumed to consist of two coexisting degrees of porosity
and the resulting model thus yields three types of longitudinal waves, one associated with
the elastic properties of the matrix material and one each for the �uids in the pore space
and the fracture space.
Nunziato and Cowin [11]developed a nonlinear theory of elastic material with voids.

Later, Cowin and Nunziato [12]developed a theory of linear elastic materials with voids for
the mathematical study of the mechanical behavior of porous solids. They also considered
several applications of the linear theory by investigating the response of the materials
to homogeneous deformations, pure bending of beams and small amplitudes of acoustic
waves. Nunziato and Cowin have established a theory for the behavior of porous solids in
which the skeletal or matrix materials are elastic and the interstices are voids of material.
Beskos and Aifantis [13] presented the theory of consolidation with double porosity-

II and obtained the analytical solutions to two boundary value problems. Khalili and
Valliappan [14] studied the uni�ed theory of �ow and deformation in double porous media.
Khalili and Selvadurai [15] presented a fully coupled constitutive model for thermo-hydro
�mechanical analysis in elastic media with double porosity structure. Various authors
[16-21] investigated some problems on elastic solids, viscoelastic solids and thermoelastic
solids with double porosity.
Iesan and Quintanilla [22] used the Nunziato-Cowin theory of materials with voids to

derive a theory of thermoelastic solids, which have a double porosity structure. This theory
is not based on Darcy�s law. In contrast with the classical theory of elastic materials with
the double porosity, the double porosity structure in the case of equilibrium is in�uenced
by the displacement �eld.
Youse¤ [23-25] investigated some problems of in�nite body with a cylindrical cavity and

spherical cavity in generalized thermoelasticity. Allam et al [26] considered the model of
generalized thermoelasticity proposed by Green and Naghdi, to study the electromagneto�
thermoelastic interactions in an in�nite perfectly conducting body with a spherical cavity.
Abd-Alla and Abo-Dahab [27] studied the e¤ect of rotation and initial stress on an in-
�nite generalized magneto-thermoelastic di¤usion body with a spherical cavity. Zenkour
and Abouelregal [28] studied the e¤ects of phase-lags in a thermoviscoelastic orthotropic
continuum with a cylindrical hole and variable thermal conductivity.
The present paper deals with thermoelastic interactions in an in�nite double porous

thermoelastic body with a spherical cavity subjected to moving heat source in context
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of Lord-Shulman theory of thermoelasticity. Laplace transform has been applied to �nd
the expressions for the components of stress and temperature distribution. The resulting
quantities are obtained in the physical domain by using a numerical inversion technique.
Variation of radial stress, equilibrated stresses and temperature distribution against radial
distance are depicted graphically to show the e¤ect of heat source velocity and relaxa-
tion time parameters. Some particular cases have also been deduced from the present
investigation.

2. Governing equations

Following Iesan and Quintanilla [22] and Lord and Shulman [1] ; the constitutive rela-
tions and �eld equations for homogeneous isotropic thermoelastic material with double
porosity structure in the absence of body forces and extrinsic equilibrated body forces
can be written as :
Constitutive Relations :

tij = �err�ij + 2�eij + b�ij'+ d�ij � ��ijT (1)

�i = �';i + b1 ;i (2)

�i = b1';i + 
 ;i (3)

Equation of motion :

�r2ui + (�+ �)uj;ji + b';i + d ;i � �T;i = ��ui; (4)

Equilibrated Stress Equations of motion :

�r2'+ b1r2 � bur;r � �1'� �3 + 
1T = �1�'; (5)

b1r2'+ 
r2 � dur;r � �3'� �2 + 
2T = �2� ; (6)

Equation of heat conduction :

�
1 + � 0

@

@t

��
�T0 _uj;j + 
1T0 _'+ 
2T0 _ + �C� _T �Q

�
= K�r2T (7)

where � and � are Lame�s constants, � is the mass density ; � = (3�+ 2�)�t ; �t is the
linear thermal expansion ; C� is the speci�c heat at constant strain, ui is the displacement
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components ; tij is the stress tensor ; �1 and �2 are coe¢ cients of equilibrated inertia ; �i is
the components of the equilibrated stress vector associated to pores ; �i is the components
of the equilibrated stress vector associated to �ssures ; ' is the volume fraction �eld
corresponding to pores  and is the volume fraction �eld corresponding to �ssures ; K� is
the coe¢ cient of thermal conductivity ; Q is the heat source ; � 0 is the thermal relaxation
time, �1 and �2 are coe¢ cients of equilibrated inertia b; d; b1; 
; 
1; 
2 and are constitutive
coe¢ cients ; �ij is the Kronecker�s delta ; T is the temperature change measured form the
absolute temperature T0 (T0 6= 0) ; a superposed dot represents di¤erentiation with respect
to time variable t.
We take the moving heat source as :

Q = Q0H(r �R)
�(r � vt)

r
(8)

where H(�) is the Heaviside unit step function, Q0 is the heat source strength and v is
its velocity.

3. Formulation of the problem

We consider a perfectly conducting thermoelastic in�nite body with double porosity
having spherical cavity occupying the region R � r < 1 of an isotropic homogeneous
medium.The spherical polar coordinates (r; #; �) are taken for any representative point of
the body at time t and the origin of the coordinate system is at the centre of the spherical
cavity. All the variables considered will be functions of the radial distance r and the time
t. The initial conditions are given by

u = 0 = _u; ' = 0 = _';  = 0 = _ ; T = 0 = _T at t = 0 (9)

Due to spherical symmetry, the displacements components are of the form

ur = u(r; t); u# = u� = 0 (10)

The components of stress tensor for a spherical symmetric system are

trr = 2�
@u

@r
+ �e+ b'+ d � �T (11)

t## = 2�
u

r
+ �e+ b'+ d � �T (12)

tr# = tr� = t#� = 0 (13)
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�r = �
@'

@r
+ b1

@ 

@r
(14)

�r = b1
@'

@r
+ 


@ 

@r
(15)

where

e = err + e## + e�� =
@u

@r
+
2u

r
; (16)

err =
@u

@r
; e## = e�� =

u

r
; er# = er� = e#� = 0 (17)

We introduce the non-dimensional quantities as :

r
0
= !1

c1
r; u

0
= !1

c1
u ; t

0
ij =

tij
�T0

; '
0
= �1!12

�1
';  0 = �1!12

�1

T
0
= T

T0
; t0 = !1t; �

0
i =

�
c1
�!1

�
�i; �

0
i =

�
c1
�!1

�
�i; �

0
0 = !1� 0; Q

0
0 =

c1Q0
K�!1T0

where c21 =
�+2�
�
; !1 =

�C�c21
K�

Making use of dimensionless quantities given by (17) on Eqs. (4)-(7) and with the aid
of Eqs. (8) and (16) yield (dropping primes for convenience)

@e

@r
+ a1

@'

@r
+ a2

@ 

@r
� a3

@T

@r
=
@2u

@t2
(18)

a4r2'+ a5r2 � a6e� a7'� a8 + a9T =
@2'

@t2
(19)

a10r2'+ a11r2 � a12e� a13'� a14 + a15T =
@2 

@t2
(20)

�
1 + � 0

@

@t

��
a16

@e

@t
+ a17

@'

@t
+ a18

@ 

@t
+
@T

@t
� Q0H(r �R)�(r � �t)

r

�
= r2T (21)

where

a1 =
b�1

�c21�
2
1!

2
1
; a2 =

d�1
�c21�

2
1!

2
1
; a3 =

�T0
�c21
; a4 =

�
�1c21

; a5 =
b1
�1c21

; a6 =
b
�1
; a7 =

�1
�1!21

;

a8 =
�3
�1!21

; a9 =

1T0
�1
; a10 =

b1
�2c21

; a11 =



�2c21
; a12 =

d�1
�2�1

; a13 =
�3
�2!21

; a14 =
�2
�2!21

;

a15 =

2T0�1
�1�2

; a16 =
�c21
�C� ; a17 =


1�1c
2
1

K��1!31
; a18 =


2�1c
2
1

K��1!31
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4. Solution in the Laplace transform domain

Applying the Laplace transform de�ned by

�f (s) = L[f(t)] =

Z 1

0

f (t) e�stdt (22)

on the Eqs. (18)-(21), after some simpli�cations, we obtain

�
r8 +B1r6 +B2r4 +B3r2 +B4

�
�e =

f1
r
e�(s=�)r (23)

�
r8 +B1r6 +B2r4 +B3r2 +B4

�
�' =

f2
r
e�(s=�)r (24)

�
r8 +B1r6 +B2r4 +B3r2 +B4

�
� =

f3
r
e�(s=�)r (25)

�
r8 +B1r6 +B2r4 +B3r2 +B4

�
�T =

f4
r
e�(s=�)r (26)

Bi; fi ; i = 1; 2; 3; 4 are given in the appendix.
Therefore, the solutions of the Eqs. (23)-(26), which is bounded at in�nity, are given

by

�e =
A1
r
e�m1r +

A2
r
e�m2r +

A3
r
e�m3r +

A4
r
e�m4r +

D1

r
e�(s=v)r (27)

�' = g11
A1
r
e�m1r + g12

A2
r
e�m2r + g13

A3
r
e�m3r + g14

A4
r
e�m4r +

D2

r
e�(s=v)r (28)

� = g21
A1
r
e�m1r + g22

A2
r
e�m2r + g23

A3
r
e�m3r + g24

A4
r
e�m4r +

D3

r
e�(s=v)r (29)

�T = g31
A1
r
e�m1r + g32

A2
r
e�m2r + g33

A3
r
e�m3r + g34

A4
r
e�m4r +

D4

r
e�(s=v)r (30)

g1i; g2i; g3i; g4i are given in the appendix.

Di =
fiv

8

s8 +B1s6�2 +B2s4�4 +B3s2�6 +B4�8
; i = 1; 2; 3; 4 (31)
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Substituting Eqs. (27) into Eq.(16), we obtain

�u = �D1

r2

�
v2

s2
+ r

v

s

�
e�(s=v)r � 1

r2

4X
i=1

Ai
m2
i

(1 + rmi) e
�mir

Making use of Eqs.(27)-(30),(32) in Eqs.(11),(14) ,(15) and with the help of Eqs.(17) and
(22), we obtain the corresponding expressions for radial stress and equilibrated stresses
as

�trr(r; s) = G5(r)e
�(s=v)r+

4X
i=1

�
�p1
r

�
m2
i +

2mi

r
+
2

r2

�
+ p2 + p3g1i + p4g2i � g3i

�
Ai(s)e

�mir

(32)

��r(r; s) = �G6(r)e�(s=v)r �
4X
i=1

(p5g1i + p6g2i)

�
mir + 1

r2

�
Ai(s)e

�mir (33)

��r(r; s) = �G7(r)e�(s=v)r �
4X
i=1

(p6g1i + p7g2i)

�
mir + 1

r2

�
Ai(s)e

�mir (34)

where

p1 =
2�
�T0

; p2 =
�
�T0

; p3 =
b�1

�T0�1!21
; p4 =

d�1
�T0�1!21

; p5 =
�1
�1!21

; p6 =
b1�1
��1!21

; p7 =

�1
��1!21

;

G5 = �1
r

�
p1D1

�
2v2

s2r2
+ 2v

sr
+ 1
�
+ p2D1 + p3D2 + p4D3 �D4

�
;

G6 = (p5D2 + p6D3)
�
s
vr
+ 1

r2

�
; G7 = (p6D2 + p7D3)

�
s
vr
+ 1

r2

�
5. Boundary conditions

We consider that the bounding plane (r = R) of the cavity is traction free and subjected
to thermal shock as follows :

trr(R; t) = 0; �r(R; t) = 0; �r(R; t) = 0; T (R; t) = T0H(t) (35)

After applying Laplace transform on Eq.(36), we get

�trr(R; s) = 0; ��r(R; s) = 0; ��r(R; s) = 0; �T (s; t) =
T0
s
= F1 (say) (36)

Substituting the values of �trr; ��r; ��r and �T from Eqs. (30), (33)-(35) in the boundary
conditions (37) yield the corresponding expressions for radial stress, equilibrated stresses
and temperature distribution as
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�trr(r; s) =
1

�
(H11�1 exp(�m1r) +H12�2 exp(�m2r) +H13�3 exp(�m3r) +H14�4 exp(�m4r))

(37)

��r(r; s) =
1

�
(H21�1 exp(�m1r) +H22�2 exp(�m2r) +H23�3 exp(�m3r) +H24�4 exp(�m4r))

(38)

��r(r; s) =
1

�
(H31�1 exp(�m1r) +H32�2 exp(�m2r) +H33�3 exp(�m3r) +H34�4 exp(�m4r))

(39)

�T (r; s) =
1

�
(H41�1 exp(�m1r) +H42�2 exp(�m2r) +H43�3 exp(�m3r) +H44�4 exp(�m4r))

(40)

where

� =

��������
H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

�������� (41)

�i (i = 1 ; 2; 3; 4) are obtained by replacing ith column of (41) with [ F2 F3 F4 (F5 + F1) ]
T

H1i =
p1
m2
i

�
m2
i

R
+ 2mi

R2
+ 2

R3

�
+ p2 + p3g1i + p4g2i � g3i;

H2i =
�
miR+1
R2

�
(p5g1i + p6g2i); H3i =

�
miR+1
R2

�
(p6g1i + p7g2i); H4i = g3i;

F2 =
1
R

�
p1D1

�
2v2

s2R2
+ 2v

sR
+ 1
�
+ p2D1 + p3D2 + p4D3 �D4

�
e�(s=v)R;

F3 = (p5D2 + p6D3)
�
s
vR
+ 1

R2

�
e�(s=v)R;

F4 = (p6D2 + p7D3)
�
s
vR
+ 1

R2

�
e�(s=v)R; F5 =

D4
R
e�(s=v)R

6. Particular cases

Case 6.1 If � 0 = 0, in Eqs. (38)-(41) yield the corresponding expressions for an in�nite
thermoelastic double porous body with a spherical cavity in the context of coupled theory
of thermoelasticity.
Case 6.2 If b1 = �3 = 
 = �2 = 
2 = d ! 0 in Eqs.(38)-(41), we obtain the cor-

responding expressions for an in�nite thermoelastic single porous body with a spherical
cavity.
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7. Inversion of the Laplace domain

In order to invert the Laplace transform, we adopt a numerical inversion method based
on a Fourier series expansion [29]
By this method the inverse f(t) of the Laplace transform �f(s) is approximated by

f(t) =
e�t

t1

"
1

2
�f(�) + Re

NX
k=1

�f

�
� +

ik�

t1

�
exp

�
ik�t

t1

�#
; 0 < t1 < 2t

where N is su¢ ciently large integer representing the number of terms in the truncated
Fourier series, chosen such that

f(t) = exp(�t)Re

�
�f

�
� +

iN�

t1

�
exp

�
iN�t

t1

��
� "1

where is a prescribed small positive number that corresponds to the degree of accuracy
required. The parameter is a positive free parameter that must be greater than the real
part of all the singularities of .The optimal choice of was obtained to the criterion described
in [29].

8. Numerical results and discussion

The material chosen for the purpose of numerical computation is copper, whose physical
data is given by Sherief and Saleh [30] as,
� = 7:76 � 1010Nm�2; C� = 3:831� 103m2s�2K�1; � = 3:86 � 1010Nm�2;
K� = 3:86� 103Ns�1K�1; T0 = 293 K;�t = 1:78� 10�5K�1 ; � = 8:954� 103Kgm�3

The double porous parameters are taken as,
�2 = 2:4 � 1010Nm�2; �3 = 2:5 � 1010Nm�2; 
 = 1:1� 10�5N;� = 1:3� 10�5 N

1 = 0:16� 105Nm�2; b1 = 0:12� 10�5 N; d = 0:1� 1010Nm�2


2 = 0:219� 105Nm�2; �1 = 0:1456� 10�12Nm�2s2; b = 0:9� 1010Nm�2

�1 = 2:3� 1010 Nm�2; �2 = 0:1546� 10�12Nm�2s2

The other non-dimensional parameters are taken as
Q0 = 5:0; t = 0:2; R = 1:0; � 0 = 0:1
The software MATLAB has been used to �nd the values of radial stress trr, equilibrated

stresses �r, �r and temperature distribution T . The variations of these values with res-
pect to radial distance r have been shown in �gures (1)-(8). In �gs.1-4, e¤ect of thermal
relaxation time is shown graphically. In all these �gures, solid line and small dashed line
correspond to Lord-Shulman(LS) theory of thermoelasticity for to coupled theory (CT)of
thermoelasticity respectively. Also, the e¤ect of heat source velocity is depicted graphi-
cally in �gs. 5-8 for di¤erent values of heat source velocity parameters � = 0:2; 0.4 and
0.6.
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Fig. 1 �Variation of radial stress trr w.r.t. radial radial distance r.

Fig. 2 �Variation of equilibrated stress �r w.r.t. radial distance r.

Fig. 3 �Variation of equilibrated stress �r w.r.t. radial radial distance r.
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Fig. 4 �Variation of temperature distribution T w.r.t. radial distance r.

Fig. 5 �Variation of radial stress trr w.r.t. radial radial distance r.

Fig. 6 �Variation of equilibrated stress �r w.r.t. radial distance r.
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Fig. 7 �Variation of equilibrated stress �r w.r.t. radial r.

Fig. 8 �Variation of temperature distribution T w.r.t. radial distance r.

Fig.1 shows that radial stress trr is maximum at the boundary surface of the spherical
cavity and it decreases monotonically with increase in radial distance r. Also, it is found
that the magnitude values of trr increases due to relaxation time parameter. The values
of trr are more for LS theory in comparison to CT theory of thermoelasticity . From
�gs.2 and 3 , it is clear that equilibrated stresses �r and �r increases for 1 � r � 2 and
then decreases onwards as increases. The magnitude values of �r and �r decreases due
to relaxation time. It is evident that the values of �r and �r are more for CT theory as
compared to the values for LS theory of thermoelasticity. Fig.4 depicts that the values of
temperature distribution T increase monotonically for 1 � r � 2, decrease monotonically
for 2 � r � 3 and then decrease very slowly and steadily with the increase in the value
of radial distance r. It is also found that relaxation time parameter increases the values
of T , the magnitude value of are more incase of LS theory than that of CT theory of
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thermoelasticity.
Fig.5 represents that radial stress trr decreases monotonically with increase in radial

distance r. Also, it is found that the magnitude values of trr decrease with the increase
in the values of heat source velocity �. Figs.6 and 7 shows that equilibrated stresses �r
and �r increase for 1 � r � 2 and then start decreasing as r > 2. It is also clear that the
magnitude values of �r and �r decrease as the value of heat source velocity � increases.
Fig.8 depicts that the values of temperature distribution T increase monotonically for
1 � r � 2, decrease monotonically for 2 � r � 3 and then become almost stationary as
r > 3. Also. it is found that as the velocity of heat source increases, the magnitude values
of temperature distribution T increases also increases.

9. Concluding remarks

In this work, we have studied the problem of in�nite thermoelastic medium with double
porosity having spherical cavity in context of Lord-Shulman theory of thermoelasticity
with one relaxation time subjected to moving heat source. E¤ect of thermal relaxation
time and heat source velocity parameters are shown graphically on radial stress, equili-
brated stresses and temperature distribution. All the �eld quantities are observed to be
very sensitive towards the heat source velocity parameter. From �gures, it is concluded
that the magnitude values of radial stress and equilibrated stresses decrease with increase
in the values of heat source velocity while a reverse trend is noticed in case of temperature
distribution. The thermal relaxation time parameter has also a considerable e¤ect on the
all the physical quantities. The relaxation time parameter has both the increasing as well
as decreasing e¤ect on these quantities which shows that it is very important to take into
account the relaxation time parameter.
This type of study is useful due to its application in geophysics and rock mechanics.

The results obtained in this investigation should prove to be bene�cial for the researchers
working on the theory of thermoelasticity with double porosity structure. The introduction
of double porous parameter to the thermoelastic medium represents a more realistic model
for further studies.
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Appendix

a19 = s(1 + � 0s); a20 = s(1 + � 0s)a16; a21 = s(1 + � 0s)a17; a22 = s(1 + � 0s)a18;
n1 = � (a7 + s2) ; n2 = � (a14 + s2) ; r1 = a5a10 � a4a11;
r2 = a4(a11a19 � n2)� a11n1 � a7a10 � a5(a10a19 + a13);
r3 = n1(a11a19 � n2) + a4(n2a19 � a15a22) + a5(a13a19 + a15a21)+

a7(a10a19 + a13) + a9(a10a22 � a11a21);
r4 = n1(n2a19 � a15a22)� a8(a13a23 + a15a21)� a9(a13a22 + n2a21); r5 = a6a11 � a5a12;
r6 = �a6(a11a19 � n2) + a7a12 + a5(a19a12 + a15a20)� a9a11a20;

r7 = �a6(n2a19 � a15a22)� a7(a12a19 + a15a20)� a8(a12a22 + n2a20);
r8 = a6a10 � a4a12; r9 = �a6(a13 + a10a19)� n1a12 + a4(a12a19 + a15a20);
r10 = a9(a13a20 � a12a21) + n1(a12a19 + a15a20) + a6 (a13a19 + a15a21) ;
r11 = a20(a4a11 � a5a10); r12 = a6(a11a21 � a10a22) + a20(n1a11 + a7a10)
+a4(a12a22 + n2a20) + a5(a13a20 � a12a21);
r13 = a7(a12a21 � a13a20) + a6(a13a22 + n2a21) + n1(a12a22 + n2a20);

B1 = (r2 � s2r1)=r1; B2 = (r3 � s2r2 � a1r5 + a2r8 + a3r11)=r1;
B3 = (r4 � s2r3 � a1r6 + a2r9 + a3r12)=r1; B4 = (�s2r4 � a1r7 + a2r10 + a3r13)=r1;

f1 = � (r1s
6 + r2s

4v2 + r3s
2v4 + r4v

6)=�
6
; f2 = �� (r5s4 + r6s

2v2 + r7v
4)=�

4

f3 = � (r8s
4 + r9s

2v2 + r10v
4)=�

6
; f4 = � (r11s

4 + r12s
2v2 + r13v

4)=�
4
; � = Q0H(r �R)=v ;

g1i = �fr5m4
i + r6m

2
i + r7g = fr1m6

i + r2m
4
i + r4g;

g2i = fr8m4
i + r9m

2
i + r10g = fr1m6

i + r2m
4
i + r3m

2
i + r4g;

g3i = �fr11m4
i + r12m

2
i + r13g = fr1m6

i + r2m
4
i + r3m

2
i + r4g; i = 1; 2; 3; 4
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